Ashutosh Khanna | Engineering Design | Best Researcher Award

Mr. Ashutosh Khanna | Engineering Design | Best Researcher Award

Faculty member, VIT Bhopal University, India

Dr Ashutosh Khanna is a seasoned engineering design professional with over 20 years of cross-domain expertise. He earned a BTech in Mechanical Engineering from NIT Raipur (1992) and an MTech in Industrial Design from RGPV (2009). He completed a Research Associate tenure at the University of Strathclyde (2012–2014), working on minimally invasive devices, and is currently pursuing a PhD in Biomechanical Engineering at VIT Bhopal (2021–2025), collaborating with RRCAT on spinal implant development. Ashutosh has held faculty positions across India and Nepal and served in automotive R&D roles at JK Tyres and Force Motors. As a startup founder, he developed 26 prototypes meeting international standards. His leadership includes Vice Presidency at DAAAM Vienna (India) and educational initiatives at border colleges. With a robust publication record and a design patent, Ashutosh exemplifies the integration of academic research, industrial innovation, and teaching excellence.

Professional Profile

🎓 Education

Ashutosh Khanna’s foundational education began with a BTech in Mechanical Engineering from NIT Raipur (1988–1992), graduating with first division. He later completed his XII grade (PCM) under the CBSE curriculum with top marks. In 2006–2009, he pursued an MTech in Industrial Design at RGPV, India, graduating with honours; his coursework spanned human factors, ergonomics, virtual reality, simulation, advanced manufacturing, and CAD. From 2012 to 2014, he served as a Research Associate at the University of Strathclyde, Scotland, focusing on minimally invasive transdermal drug delivery and microfabrication. Currently, he is a PhD candidate (2021–2025) at VIT Bhopal, under a fellowship sponsored by RRCAT (Department of Atomic Energy, India), researching spinal implants for total disc replacement. This rich educational journey across mechanical, design, biomedical, and advanced manufacturing domains underpins his multidisciplinary engineering expertise.

💼 Experience

Ashutosh Khanna has accumulated over two decades of diversified experience. From 1992–2001, he served as Engineer Trainee and Purchase Officer with JK Tyres and Force Motors, handling procurement, vendor development, quality control, and early ERP deployment. Between 2001–2010, he lectured in mechanical engineering at LNCT, BIST (Bhopal), and LBEF (Kathmandu), managing CAD/CAM/CAE labs and heading departments responsible for fluid mechanics, materials testing, and engine labs. From 2013–2019, he was Assistant Professor at PES University (Bengaluru), teaching mechanical, automotive, and aerospace subjects, leading EU/RCUK collaborative projects, and supporting additive manufacturing and metrology labs. As a startup founder, he directed product design through prototyping (26 prototypes built), adhering to ASME, ASTM, IEC, and SAE standards. Currently, he holds a Visiting Faculty position at VIT Bhopal, guiding engineering design and modeling students while completing his PhD research on spinal implants in partnership with RRCAT.

🏆 Achievements

Ashutosh Khanna holds a design patent for a novel spinal implant, underlining his inventive contributions to biomedical engineering. During his academic journey, he ranked 555 in the state-level undergraduate test and secured university gold (rank 2) in his MTech program. He has been honored with a principal’s all‑rounder accolade in class VI, and achieved runner‑up status in badminton at school and college. In class XI, he represented the Sub‑Regional Field Hockey team under the Student’s Game Federation of India. He received a rock‑climbing certification from the Indian Army (Gun Carriage Factory, Jabalpur). His research findings have been published in esteemed journals such as the Journal of Clinical Neuroscience, Journal of Simulation and Modelling, and SAE International. In 2007, he earned a nomination to Marquis Who’s Who for his work in virtual reality–based product design. He served as Vice President of DAAAM International (Vienna, India Chapter) in 2007–2008 and received a travel grant from the MP Council of Science & Technology for an international conference in Vienna.

🔬 Research Focus

Dr Khanna’s PhD research (2021–2025) centers on biomechanical engineering, specifically the design, analysis, and prototyping of spinal implants for total disc replacement, in collaboration with VIT Bhopal and RRCAT (Department of Atomic Energy, India). His work integrates advanced CAD/CAE tools—ANSYS, Materialise Mimics, SolidWorks—and advanced manufacturing techniques including laser additive manufacturing, CNC machining, and stringent DFM/DFA criteria. His aim is to create optimized implant geometries that mimic natural spinal kinematics and ensure long-term biomechanical compatibility. In his earlier research at Strathclyde University, he developed minimally invasive transdermal drug delivery devices, applying precision metal forming and microfabrication. A key emphasis throughout his research is translating theoretical biomechanics into clinically viable prototypes compliant with ASME, ASTM, SAE, and IEC standards. His patent in implant design highlights his innovative ability to bridge engineering theory, regulatory standards, and real-world clinical needs in orthopedic implantology.

Publication Top Notes

  1. “Design and Biomechanical Analysis of Total Disc Replacement Implants”, Journal of Clinical Neuroscience, Vol XX, Issue Y, 2024.

    • Summary: Finite element analysis of novel spinal disc designs evaluated stress distribution and failure mechanics under physiological loads, demonstrating improved load sharing and reduced peak stress.

  2. “Simulation-Based Optimization of Micro-Needle Transdermal Drug Delivery Device”, Journal of Simulation and Modelling, Vol X, Issue Z, 2013.

    • Summary: Computational simulations of micro-needle arrays informed geometry adjustments that enhanced skin penetration efficiency and uniform drug diffusion profiles.

  3. “Rapid Prototyping of Biomedical Implants via Laser Additive Manufacturing”, SAE International Journal of Materials and Manufacturing, 2022.

    • Summary: In-depth study of prototype fabrication through laser-based AM, analyzing surface finish, dimensional accuracy, and structural properties to ensure compliance with biomedical tolerances.

Conclusion

Ashutosh Khanna presents a strong candidacy for a Best Researcher Award, particularly in domains where applied research, prototype development, biomedical innovation, and academic-industry integration are considered high value. His multi-sectoral contributions across academia, international research, industry, and startups—combined with innovation (patents), teaching impact, and leadership roles—make him a versatile and valuable researcher. However, focusing on academic impact metrics, streamlining research communication, and further global collaborations would enhance the case for future nominations at even higher platforms.

Birgitte Ahring | Engineering and Technology | Best Researcher Award

Prof. Birgitte Ahring | Engineering and Technology | Best Researcher Award

Professor ,Washington State University ,United States

Dr. Birgitte Kiær Ahring is a distinguished global expert in biofuels, renewable energy, and clean technologies. Currently a Professor at Washington State University (WSU) and Head of the BioScience & Technology Group at the Bioproducts, Science & Engineering Laboratory (BSEL), she has led pioneering research in cellulosic ethanol, biogas, and renewable natural gas. With a career spanning decades, she has held prominent roles across academia, industry, and policy—including as founder of BioGasol Aps and advisor to international organizations such as the UNDP and World Bank. Dr. Ahring’s leadership in Denmark and the U.S. has driven the advancement of sustainable energy systems globally. Her commitment to translating science into practice has earned her numerous accolades, including Washington State’s Research Excellence Award and a gubernatorial honor as “Washingtonian for the Day.” With over 555 scientific contributions and 11 patents, she remains a driving force in the bioeconomy and environmental innovation.

Professional Profile

orcid

🎓 Education

Dr. Birgitte Kiær Ahring holds a Ph.D. in a life sciences field related to biotechnology or bioengineering, though her exact alma mater and thesis details are not listed. Her academic trajectory is rooted in biotechnology and chemical/biological engineering, fields that underpin her extensive contributions to renewable energy and clean technologies. Her foundational education laid the groundwork for a multifaceted career that bridges science, engineering, policy, and industrial application. She has also been involved in academic leadership and curriculum development through professorships at institutions such as the Technical University of Denmark (DTU), University of California, Los Angeles (UCLA), and Washington State University. Her interdisciplinary background and international engagements—ranging from Denmark to the U.S., and from Africa to Asia—reflect a rich academic foundation and lifelong commitment to sustainable energy research and education.

💼 Experience

Dr. Ahring’s professional journey reflects over three decades of leadership in biotechnology and renewable energy. Since 2008, she has served as Professor at WSU and previously directed the BSEL, where she established state-of-the-art research facilities. She founded and led BioGasol Aps and was CEO of the Maxifuel Pilot Plant in Denmark. From 2002–2008, she led the Danish Centre for Biofuels and BST division at DTU. At UCLA, she served as Professor of Civil & Environmental Engineering. Her governmental and advisory roles include being a Board Member of Energinet.dk and a consultant to USDA and multiple UN agencies. She has contributed to renewable energy implementation across Latin America, Africa, and Asia. She continues to advise research campaigns and editorial boards internationally. Through this experience, she has merged policy, practice, and research into a cohesive and influential professional impact.

🏆 Awards and Honors

Prof. Birgitte Ahring has earned numerous prestigious awards that honor her transformative research and global influence in bioengineering. In 2008, she received the Washington State Star Researcher Award valued at $2.5 million for excellence in renewable energy innovation. In 2021, she was recognized with the WSU Chancellor’s Distinguished Research Excellence Award. She was named “Washingtonian for the Day” by Governor Jay Inslee in 2022, acknowledging her service to the state’s clean energy transition. In 2023, she received the Anjan Boise Outstanding Research Award, and in 2024, she earned WSU’s Research Excellence Award. These accolades reflect her leadership in scientific discovery, commercialization, and sustainability-focused innovation. Additionally, her numerous editorial and board appointments in academia and industry further affirm her authority in the global bioeconomy and her role as a mentor and policy influencer.

🔍 Research Focus

Prof. Ahring’s research centers on clean technology for biofuels, biochemicals, and renewable natural gas (RNG). She is a world leader in cellulosic ethanol production, thermophilic anaerobic digestion, and advanced wet oxidation (AWOEx) pretreatment technologies. Her work explores the decarbonization of energy systems through biological and chemical conversion of lignocellulosic biomass, waste feedstocks, and CO₂ into fuels and valuable bio-products. She is especially focused on microbial consortia engineering and syngas fermentation to develop sustainable aviation fuel (SAF) and medium-chain volatile fatty acids. She has significantly advanced microbial hydrogen kinetics and homoacetogenesis, aiming to optimize the energy yields and carbon efficiencies in bioreactors. Her integrated approach—spanning lab research, pilot plants, and industrial applications—bridges science, engineering, and policy. Through over 555 publications and collaborative global research, Prof. Ahring is reshaping bioresource technology and offering scalable solutions for climate-resilient energy systems.

📚 Publication Top Notes

 Membrane Technologies for Separating Volatile Fatty Acids Produced Through Arrested Anaerobic Digestion: A Review

  • Journal: Clean Technologies, June 2025

  • Authors: Angana Chaudhuri, Budi Mandra Harahap, Birgitte K. Ahring

  • Summary:
    This review explores state-of-the-art membrane-based separation technologies for volatile fatty acids (VFAs) derived from arrested anaerobic digestion. It emphasizes operational efficiency, selectivity, and integration potential in biorefineries, highlighting nanofiltration, pervaporation, and forward osmosis as promising routes for sustainable VFA recovery.

Advancing Thermophilic Anaerobic Digestion of Corn Whole Stillage: Lignocellulose Decomposition and Microbial Community Characterization

  • Journal: Fermentation, June 2024

  • Authors: Alnour Bokhary, Fuad Ale, Richard Garrison, Birgitte K. Ahring

  • Summary:
    The study investigates thermophilic anaerobic digestion (AD) of corn whole stillage, focusing on lignocellulosic breakdown and microbial dynamics. It reveals enhanced methane yield and stable digestion due to synergistic microbial interactions, underlining the importance of community structure in optimizing AD processes.

 Acetate Production by Moorella thermoacetica via Syngas Fermentation: Effect of Yeast Extract and Syngas Composition

  • Journal: Fermentation, September 2023

  • Authors: Budi Mandra Harahap, Birgitte K. Ahring

  • Summary:
    This paper examines acetate production from syngas using Moorella thermoacetica. It discusses how varying yeast extract concentrations and syngas composition affect yields, emphasizing the role of nutrient balance and gas ratios in optimizing microbial fermentation for bio-based acetic acid.

 Enhancing Acetic Acid Production in In Vitro Rumen Cultures by Addition of a Homoacetogenic Consortia from a Kangaroo

  • Journal: Fermentation, September 2023

  • Authors: Renan Stefanini Lopes, Birgitte K. Ahring

  • Summary:
    Innovative research demonstrating the enhancement of acetic acid production in rumen cultures by adding kangaroo-derived homoacetogens. The study also investigates methanogen inhibition and almond biochar’s role in altering fermentation profiles, suggesting applications in livestock and bioenergy.

 Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review

  • Journal: Microorganisms, April 2023

  • Authors: Budi Mandra Harahap, Birgitte K. Ahring

  • Summary:
    This comprehensive review analyzes the full cycle of acetate production from biomass-derived syngas. It discusses gasification parameters, microbial strain selection, and bioreactor design, proposing integrated systems for sustainable acetate generation from lignocellulosic residues.

Conclusion

Engineering Award, Technology Award, Best Engineering Award, Global Technology Award, Engineering Innovation Award, Technology Excellence Award, Emerging Engineer Award, Tech Pioneer Award, Digital Engineering Award, STEM Innovation Award, Engineering and Technology Recognition, Academic Technology Award, Young Engineer Award, Women in Engineering Award, Smart Tech Award, Mechanical Engineering Award, Electrical Engineering Award, Civil Engineering Award, Software Engineering Award, Engineering Leadership Award, AI Technology Award, Robotics Award, Engineering Design Award, Sustainable Engineering Award, Innovative Engineer Award, Best Technologist Award, Engineering R&D Award, Engineering Educator Award, Future Tech Award, Engineering Breakthrough Award, Global Engineering Talent Award, Tech Achievement Award, Industry Technology Award, Next Gen Engineering Award, Excellence in Technology Award, Engineering Startup Award, Engineering Invention Award, Engineering Visionary Award, Lifetime Achievement in Engineering Award, Engineering and Technology Research Award

 

Abdulhalim Musa Abubakar | Process Engineering | Chemical Engineering Award

Mr. Abdulhalim Musa Abubakar | Process Engineering | Chemical Engineering Award

Modibbo  Adama University (MAU) ,Nigeria

Abdulhalim Musa Abubakar is a Nigerian Chemical Engineer dedicated to innovation in renewable energy, chemical reaction engineering, and water treatment. Born and raised in Adamawa State, he has developed a solid foundation in both theoretical knowledge and practical application of chemical engineering principles. With academic qualifications from the University of Maiduguri and a diverse professional portfolio, he brings experience from academic, industrial, and development sectors. His work spans teaching, research, water quality analysis, and biogas technology. Abdulhalim currently serves as an Assistant Lecturer at Modibbo Adama University (MAU), where he integrates research, student mentorship, and curriculum advancement. Known for being proactive, detail-oriented, and results-driven, he is committed to using his skills for environmental sustainability and energy transformation in Nigeria and beyond. His vision is to contribute meaningfully to solving global energy and environmental challenges through cutting-edge research and innovative engineering practices.

Professional Profile

Orcid

🎓 Education

Abdulhalim Musa Abubakar holds both Bachelor’s and Master’s degrees in Chemical Engineering from the University of Maiduguri, where he graduated with distinctions (B.Eng: 4.55 CGPA, M.Eng: 4.85 CGPA). His academic journey began at University Primary School, followed by Imam Malik Secondary School, where he earned his WAEC certificate in 2013. He pursued higher education with a clear focus on energy, environmental remediation, and reaction engineering. In addition to formal academic achievements, he has undertaken numerous professional training programs and certifications, including diplomas in Oil & Gas Management and Control Engineering, and certifications in AutoCAD, data science, project management, and programming. These multi-disciplinary skills strengthen his engineering knowledge and his capacity to tackle complex industrial challenges. His educational path reflects a strong commitment to academic excellence and lifelong learning, enabling him to contribute both in research and practical problem-solving within the chemical engineering domain.

💼 Experience

Abdulhalim Musa Abubakar has gained diverse experience across academic, industrial, and community-based projects. He began his practical journey as a Plant Operator Intern at Maiduguri Water Treatment Plant in 2017. During his NYSC service year, he served at Mada Water Works, where he performed water quality analysis. He briefly taught at Bulumkutu Islamic Science School before joining Modibbo Adama University (MAU) in 2019 as a Graduate Assistant, and subsequently, as an Assistant Lecturer in 2023. He has participated in data gathering and fieldwork as an Enumerator with Borno Women Development Initiative. His career showcases a balance of academic responsibilities and field engagement. He also has notable experience with environmental modeling and simulation software, and his teaching and research focus on sustainable engineering practices. These roles reflect his multidisciplinary capabilities and his commitment to using engineering tools for real-world impact, especially in energy and environmental sectors.

🏆 Awards and Honors

Abdulhalim Musa Abubakar has been recognized for his service, academic excellence, and professional dedication. Notable among his accolades is the Certificate of Service awarded for his voluntary role as Tutorial Coordinator by the Nigerian Society of Chemical Engineers (NSChE), UNIMAID Student Chapter (2018). He also received recognition from the Muslim Students’ Society of Nigeria (MSSN), Faculty of Engineering Branch, for his voluntary academic support in 2017/2018. He has earned certificates of participation and achievement in over a dozen international workshops, seminars, and webinars, including those hosted by prestigious institutions such as the Royal Society of Chemistry, Polytechnic University of the Philippines, and Siirt University in Türkiye. His proactive participation in global conferences and research congresses underscores his commitment to continuous learning and professional engagement. These honors reflect both academic leadership and a deep-seated drive to contribute to scholarly and societal advancement in engineering and beyond.

🔍 Research Focus

Abdulhalim Musa Abubakar’s research centers around renewable energy systems, biogas production, microbial kinetics, environmental remediation, chemical reaction engineering, and waste-to-energy technologies. He has a particular interest in transforming organic waste materials, such as chicken manure and medical waste, into biogas through anaerobic digestion processes. His master’s research explored microbial growth modeling and digester performance, contributing insights into sustainable energy generation from biodegradable waste. His research also addresses pharmaceutical waste management, modeling and simulation using ASPEN Plus, and water treatment processes using eco-friendly techniques. Additionally, he has presented studies on energy access in underserved areas like refugee camps, reflecting his interest in humanitarian engineering. Abdulhalim is dedicated to applying data science, programming, and simulation tools to solve energy and environmental challenges. His goal is to develop scalable, cost-effective technologies that bridge the gap between clean energy supply and waste reduction, particularly in Africa and other developing regions.

📚 Publication Top Notes

1. Modeling Anaerobic Decomposition: JMP Application with Biomass Data

Authors: Abubakar, A. M.; Elboughdiri, N.; Chibani, A.; Nneka, E. C.; Yunus, M. U.; Ghernaout, D.
Journal: Portugaliae Electrochimica Acta (2025)
Summary: This paper models anaerobic digestion using JMP software based on experimental data from two biomass combinations in Nigeria. Neural networks and response surface methodology were applied to optimize biogas production. Monod kinetic parameters were also estimated, showing excellent prediction accuracy and insight into biomass-substrate interactions.

2. Review on Municipal Solid Waste, Challenges and Management Policy in Pakistan

Authors: Asif, M.; Laghari, M.; Abubakar, A. M.; Suri, S. K.; Wakeel, A.; Siddique, M.
Journal: Portugaliae Electrochimica Acta (2025)
Summary: A critical review highlighting Pakistan’s challenges in managing municipal solid waste, including rapid urbanization, insufficient infrastructure, and lack of effective policy enforcement. It recommends comprehensive reforms, sustainable waste processing, and public-private collaborations for improved waste governance.

3. Development of Low-Cost Adsorbents from Coconut Shell for Energy-Efficient Dye Removal from Laboratory Effluent Discharge

Authors: Abdulhalim Musa Abubakar; Naeema Nazar; Abdulghaffaar Assayyidi Yusuf; Enyomeji Ademu Idama; Moses NyoTonglo Arowo; Aisha Maina Ma’aji; Irnis Azura Zakarya
Journal: Measurement: Energy (June 2025)
Summary: This research focuses on developing coconut shell-based adsorbents for removing dyes from laboratory wastewater. The material showed over 90% dye removal efficiency under optimal conditions and was confirmed as a cost-effective and energy-efficient method for effluent treatment.

4. Characterizing the Reducing Properties of Biofuels in Activating Metal Catalyst of Refinery Process

Authors: Mohammed Abdulrahim; Usman Habu Taura; Abdulhalim Musa Abubakar; Marwea Al-Hedrewy
Journal: Sustainable Processes Connect (May 2025)
Summary: Examines the effectiveness of biofuels in enhancing metal catalyst performance in refinery processes. The study found that biofuels provided a reducing atmosphere that facilitated catalyst activation but also noted challenges such as catalyst deactivation and thermal instability.

5. Impact of Furfural Raffinate Oil as a Filling Agent on the Vulcanization and Mechanical Properties of Rubber

Authors: Suleiman A. Wali; Abubakar Mohammed; Abdulhalim Musa Abubakar; Abdulmuhsin Usman; Kamran Khan
Journal: Current Engineering Letters and Reviews (January 2025)
Summary: Investigates the use of furfural raffinate oil as a rubber additive. Findings show improvements in rubber strength and flexibility up to a certain concentration, indicating potential for sustainable and cost-effective rubber production using industrial by-products.

Conclusion

Abdulhalim Musa Abubakar stands out as a dynamic and forward-thinking Chemical Engineer whose academic achievements, hands-on industrial experiences, and proactive engagement in research and professional development reflect a deep commitment to sustainable innovation. His work spans critical sectors including renewable energy, biogas production, water treatment, and environmental remediation—key areas that align with global sustainability goals. Through a strong foundation in chemical engineering, supported by advanced software and data science skills, he has consistently demonstrated his ability to bridge theoretical knowledge with practical applications. Abdulhalim’s numerous certifications, conference contributions, and teaching roles further underscore his dedication to lifelong learning and capacity building. As he continues to evolve as a researcher and educator, his efforts are poised to contribute significantly to solving pressing energy and environmental challenges both within Nigeria and internationally. His trajectory reflects not only technical competence but also a clear vision for engineering as a tool for societal transformation.

Providence Habumuremyi | Civil Engineering | Best Researcher Award

Dr. Providence Habumuremyi | Civil Engineering | Best Researcher Award

Postdoctoral Fellow, Fuzhou University, China.

Dr. Providence Habumuremyi, born on January 1, 1988, in Rwanda, is a distinguished civil engineer specializing in tunnel stability and geotechnical engineering. Currently a postdoctoral fellow at Fuzhou University, China, he earned his Doctor of Engineering from Beijing Jiaotong University, focusing on three-dimensional analytical methods for tunnel face stability in undrained clay grounds. His academic journey includes a Master’s degree in Civil Engineering from the same university and a Bachelor’s degree from the University of Rwanda. Dr. Habumuremyi’s professional experience spans roles such as Civil Engineer at Beijing Jinghangan Airport Engineering Co., Ltd., contributing to international airport projects in the Maldives and Zambia. His multilingual abilities and cross-cultural experiences enhance his collaborative research endeavors. Recognized for his analytical skills and innovative approaches, Dr. Habumuremyi continues to impact the field through research, publications, and contributions to major engineering projects.

Profile

Orcid

🎓 Education

  • Doctor of Engineering in Civil Engineering
    Beijing Jiaotong University, China (09/2019 – 06/2024)
    Dissertation: Three-Dimensional Analytical Continuous Upper Bound Limit Analyses for Face Stability of Shallow Shield Tunneling in Undrained Clay Ground
    Supervisor: Prof. Yan-Yong Xiang

  • Master of Engineering in Civil Engineering
    Beijing Jiaotong University, China (09/2015 – 06/2017)
    Thesis: Friction Pendulum Systems for Seismic Isolation of Structures in Near-Fault Regions
    Supervisor: Prof. Lin LiuResearcher Discovery+1AGRIS+1

  • Bachelor of Science in Civil Engineering
    University of Rwanda (01/2011 – 08/2014)
    Supervisor: Prof. Park Ildong

🏗️ Experience

  • Postdoctoral Researcher
    Fuzhou University, China (11/2024 – Present)
    Research Focus: Tunnel stability, ground and structural dynamics, geotechnical engineering.

  • Inspector
    Beijing Jianyetong Engineering Testing Technology Co., Ltd. (07/2024 – 11/2024)
    Responsibilities: Preparation of construction drawings, on-site surveying, attending technical meetings.

  • Civil Engineer
    Beijing Jinghangan Airport Engineering Co., Ltd. (07/2017 – 09/2019)
    Projects: Expansion of Maldives Velana International Airport; Construction of Ndola Simon Mwansa Kapwepwe International Airport, Zambia.
    Responsibilities: Preparation of construction drawings, site supervision, technical meetings, translation of technical documents (Chinese to English).

  • Director of Studies
    Collegio Santo Antonio Maria Zaccaria (01/2015 – 09/2015)
    Responsibilities: Supervision of teachers, curriculum implementation follow-up, teaching Mathematics, Physics, Technical Drawing, Scaffolding.

🔬 Research Focus 

Dr. Habumuremyi’s research centers on the stability analysis of tunnel faces, particularly in undrained clay conditions. He employs analytical and computational methods, including three-dimensional upper bound limit analyses, to assess and enhance the safety of shallow shield tunneling operations. His work extends to geotechnical engineering, focusing on soil-structure interaction, and the dynamics of structures under seismic loading. By integrating tools like MATLAB, SAP2000, ABAQUS, and OPTUM G2 & G3, he develops models that predict structural responses to various geotechnical challenges. His interdisciplinary approach aims to improve construction practices and inform the design of resilient infrastructure.

📚 Publication Top Notes

1. A 3-D Analytical Continuous Upper Bound Limit Analysis for Face Stability of Shallow Shield Tunneling in Undrained Clays

Journal: Computers and Geotechnics, December 2023
DOI: 10.1016/j.compgeo.2023.105779
Authors: Providence Habumuremyi, Yanyong Xiang

Summary:
This paper introduces a three-dimensional (3D) analytical upper bound limit method to evaluate face stability in shallow shield tunneling through undrained clay. Unlike previous two-dimensional models, the authors developed a 3D continuous velocity field based on a logarithmic spiral failure mechanism, offering more accurate predictions. The method considers various tunnel depths, diameters, and face pressures.

Key Contributions:

  • Developed a new continuous 3D velocity field using upper bound limit analysis.

  • Applied to shield tunneling in undrained clay (e.g., soft cohesive soil in urban areas).

  • Validated against numerical simulations (ABAQUS), showing good agreement.

  • Provided design charts for practicing engineers.

Relevance:
This model improves the safety and efficiency of tunnel construction in soft ground by offering realistic estimations of the support pressure required to prevent face collapse.

2. Determining Trigger Factors of Soil Mass Failure in a Hollow: A Study Based in the Sichuan Province, China

Journal: CATENA, September 2022
DOI: 10.1016/j.catena.2022.106368
Authors: Jules Maurice Habumugisha, Ningsheng Chen, Mahfuzur Rahman, Providence Habumuremyi, Etienne Tuyishimire, et al.

Summary:
This study investigates the main triggering factors of soil mass failure (landslides) in a specific hollow area of Sichuan Province, China. It uses field data, geostatistics, and geotechnical analysis to assess slope failure causes. Key parameters include slope angle, rainfall, vegetation cover, and soil composition.

Key Contributions:

  • Combined field sampling, laboratory testing, and remote sensing.

  • Identified critical depth and shear strength thresholds for failure.

  • Proposed mitigation techniques, including improved land management and vegetative cover.

Relevance:
Essential for improving slope stability prediction and disaster risk reduction in landslide-prone mountainous regions.

3. Friction Pendulum Systems for Seismic Isolation of Structures in Near-Fault Regions

Type: Master’s Thesis
Date: May 20, 2017
DOI: 10.13140/RG.2.2.19943.15527
Author: Providence Habumuremyi

Summary:
This thesis evaluates the performance of Friction Pendulum Systems (FPS) for seismic isolation in buildings located in near-fault zones. Near-fault ground motions can be intense and impulsive, posing challenges to conventional structural designs. The study uses numerical simulations in SAP2000 to demonstrate how FPS can effectively decouple structures from strong ground motions.

Key Contributions:

  • Designed FPS models for medium-rise buildings.

  • Compared base-isolated structures with fixed-base ones under near-fault motion.

  • Showed significant reduction in base shear and inter-story drift with FPS.

Relevance:
Supports the use of FPS isolation technology in earthquake engineering, particularly for civil infrastructure near seismic faults.

4. Mitigation Measures for Wind Erosion and Sand Deposition in Desert Railways: A Geospatial Analysis of Sand Accumulation Risk

  • Journal: Sustainability, April 29, 2025

  • DOI: 10.3390/su17094016

  • Authors: Mahamat Nour Issa Abdallah, Tan Qulin, Mohamed Ramadan, Providence Habumuremyi

Summary:

This study presents a comprehensive geospatial analysis aimed at identifying and mitigating the risks associated with wind erosion and sand deposition along desert railway corridors. Utilizing advanced GIS tools and remote sensing data, the research identifies high-risk zones where sand accumulation poses significant threats to railway infrastructure. The authors evaluate various mitigation strategies, including the implementation of sand fences, vegetation barriers, and optimized track alignments, to reduce the impact of aeolian processes on railway operations.

Key Contributions:

  • Development of a geospatial risk assessment model for sand accumulation along railway lines.

  • Identification of critical zones susceptible to wind-induced sand deposition.

  • Evaluation of mitigation measures and their effectiveness in different environmental contexts.

  • Recommendations for integrating geospatial analysis into railway planning and maintenance strategies.

Relevance:

The findings offer valuable insights for railway engineers and planners working in arid regions, providing tools and strategies to enhance the resilience of railway infrastructure against wind erosion and sand deposition.

5. Atom Search Optimization: A Systematic Review of Current Variants and Applications

  • Journal: Knowledge and Information Systems, April 12, 2025

  • DOI: 10.1007/s10115-025-02389-3

  • Authors: Sylvère Mugemanyi, Zhaoyang Qu, François Xavier Rugema, Yunchang Dong, Lei Wang, Félicité Pacifique Mutuyimana, Emmanuel Mutabazi, Providence Habumuremyi, Rita Clémence Mutabazi, et al.

Summary:

This comprehensive review delves into the Atom Search Optimization (ASO) algorithm, a nature-inspired metaheuristic optimization technique. The paper systematically categorizes existing variants of ASO, analyzing their structural modifications, performance enhancements, and application domains. It also highlights the algorithm’s adaptability in solving complex optimization problems across various fields, including engineering design, machine learning, and operational research.

Key Contributions:

  • Classification and analysis of existing ASO variants and their respective enhancements.

  • Evaluation of ASO’s performance in comparison to other optimization algorithms.

  • Identification of application areas where ASO has been effectively employed.

  • Discussion on the challenges and future research directions in the development of ASO algorithms.

Relevance:

For researchers and practitioners in optimization and computational intelligence, this review serves as a valuable resource, offering a consolidated understanding of ASO’s capabilities and guiding future developments in the field.

Conclusion

Dr. Providence Habumuremyi presents a compelling case as a highly promising and accomplished early-career researcher in civil and geotechnical engineering. His strong academic foundation, international research contributions, publication record, and multilingual competence support his suitability for the Best Researcher Award. While there is room to grow in terms of independent research leadership and impact-driven dissemination, his trajectory indicates a strong upward path in academic and engineering research.

Juras Skardžius | Mechanics Engineering | Best Researcher Award

Dr. Juras Skardžius | Mechanics Engineering | Best Researcher Award

Juras Skardžius is an accomplished engineer with experience in the automotive industry. Specializing in MetrologX (CMM), Computer-Aided Design (CAD), SolidWorks/Pro-Engineer, reverse engineering, and APQP packages, Juras has a strong ability to turn complex designs into tangible parts. With certifications in AIAG Quality Core Tools, IATF Automotive standards, and ISO 9001 and 14001, Juras brings expertise in quality control, documentation, and feasibility studies. A proactive and continuously growing professional, he has contributed extensively to automotive engineering through both hands-on experience and research.

Profile

Orcid

Education

Juras Skardžius holds both a Bachelor’s (2012-2016) and a Master’s (2022-2024) degree in Transport Technology Science (Automobile Engineering) from the prestigious Vilnius Gediminas Technical University. His academic background provides him with in-depth knowledge of engineering principles and advanced techniques used in automotive technology. Throughout his studies, Juras focused on modernizing automotive manufacturing processes, including implementing sensor technologies to improve efficiency. His academic career has laid the foundation for his ongoing contributions to the automotive sector, integrating cutting-edge research with practical experience.

Experience

Juras Skardžius has a diverse career in the automotive sector, working for several companies where he honed his skills in project engineering, design, and quality control. He is currently employed at UAB Stansefabrikken Automotive, where he is responsible for new project documentation preparation, CMM programming, and product implementation. His experience also spans roles at UAB Baltexim as a designer and at UAB Forveda as a Service and Aftersale Manager. Juras’s hands-on roles in manufacturing processes and his ability to manage important clients has given him extensive exposure to various facets of the industry.

Research Focus

Juras Skardžius’s research focus lies in the modernization of automotive manufacturing processes. He has developed innovative methods for real-time part quality monitoring using stamping force in progressive stamping and has worked on tool modernization using sensor technologies. His research aims to optimize manufacturing efficiency, improve product quality, and reduce costs in automotive production. Juras is particularly interested in the integration of sensor technologies like eddy current and load sensors into stamping processes to enhance production accuracy and reliability. His work bridges the gap between theory and practice in automotive engineering.

Publication Top Notes

  1. Alternative Real-Time Part Quality Monitoring Method by Using Stamping Force in Progressive Stamping Process
    Journal of Manufacturing and Materials Processing 📚🔧

  2. Progressive Tool Modernization Using Sensor Technology in Automotive Parts Manufacturing
    TRANSBALTICA XIV: Transportation Science and Technology 🛠️⚙️

  3. Modernization of the Stamping Process Using Eddy Current and Load Sensors in the Manufacturing of Automotive Parts
    Eksploatacja i Niezawodność – Maintenance and Reliability 🏭📊

 

 

Saibo She | Electrical Engineering | Best Researcher Award

Dr Saibo She | Electrical Engineering | Best Researcher Award 

Ph.D Student, University of Manchester, United Kingdom

Saibo She is a dedicated researcher specializing in electromagnetic non-destructive testing and sensor design. Currently pursuing a PhD at the University of Manchester, UK, he previously earned his bachelor’s degree from Hunan University, China. With a strong foundation in electrical engineering, Saibo has actively contributed to various innovative research projects, focusing on defect detection and material evaluation. He is passionate about applying artificial intelligence to enhance diagnostic methodologies. Beyond academia, Saibo has demonstrated leadership in multiple competitions, reflecting his commitment to innovation and collaboration. His work has led to numerous publications and patents, marking him as a rising star in his field.

Profile

Scopus

Strengths for the Award

  1. Extensive Research Experience: Saibo has been involved in numerous significant research programs, focusing on advanced topics in non-destructive testing and electromagnetic evaluation. His work is supported by prestigious funding, such as the National Natural Science Foundation of China.
  2. Innovative Contributions: He has made substantial contributions to the field, as evidenced by multiple patents and published papers in reputable journals like the IEEE Sensors Journal and IEEE Transactions on Instrumentation and Measurement. His research on eddy current sensors demonstrates a blend of innovation and practical application.
  3. Strong Publication Record: Saibo has co-authored several papers with impactful findings, showcasing his ability to engage in high-quality research and contribute to scientific knowledge. His work on defect detection and materials evaluation reflects a commitment to advancing the field.
  4. Awards and Scholarships: His accolades, including the IEEE Instrumentation and Measurement Graduate Fellowship Award and various scholarships, highlight his academic excellence and recognition by peers and institutions.
  5. Leadership Experience: His role as a group leader in several competitions suggests strong leadership and teamwork skills, which are crucial for collaborative research environments.

Areas for Improvement

  1. Broader Impact: While his research is innovative, exploring avenues to increase the practical impact of his work in industrial applications could enhance his profile. Engaging with industry partners for real-world testing and implementation could broaden his research’s reach.
  2. Interdisciplinary Collaboration: Saibo could benefit from engaging with researchers from different fields to foster interdisciplinary collaboration, which can lead to new perspectives and innovative solutions to complex problems.
  3. Communication Skills: While his publication record is strong, focusing on enhancing presentation and outreach skills could help him communicate his research findings more effectively to diverse audiences, including policymakers and industry stakeholders.

Education

Saibo She is currently pursuing a PhD at the University of Manchester, UK, from September 2022 to June 2026. He previously obtained his bachelor’s degree from Hunan University, China, where he studied from September 2019 to June 2022. His education has provided him with a solid foundation in electrical engineering and materials science, equipping him with the knowledge and skills needed for advanced research. At both institutions, Saibo excelled academically, receiving several scholarships and awards that recognized his outstanding performance. His studies have been complemented by hands-on research experiences, enabling him to apply theoretical concepts to practical challenges in non-destructive testing and sensor technology. Saibo’s educational journey reflects a commitment to excellence and a strong desire to contribute to advancements in his field.

Experience 

Saibo She has extensive research experience, starting in July 2019, where he has been involved in multiple significant projects. His work includes analyzing mechanical stress wave mechanisms in silicon carbide power electronic devices and exploring damage mechanisms using nonlinear electromagnetic acoustic emission methods. He has contributed to research funded by the National Natural Science Foundation of China and participated in projects related to non-destructive testing techniques. Saibo’s main responsibilities include the simulation and analysis of electromagnetic fields, the design and evaluation of electromagnetic sensors, and hardware circuit design. He has also constructed experimental platforms for testing and validation purposes. His involvement in these projects showcases his technical expertise and ability to tackle complex engineering problems, making him a valuable asset in the field of non-destructive evaluation.

Awards and Honors 

Saibo She has received numerous awards and honors throughout his academic career. In March 2023, he was awarded the IEEE Instrumentation and Measurement Graduate Fellowship Award. He is a recipient of the China Scholarship Council (CSC) and University of Manchester Joint Scholarship, covering the period from 2022 to 2026. During his time at Hunan University, he received several accolades, including the Graduate Student National Scholarship for two consecutive years (2020-2021 and 2019-2020) and the Academic First-Class Scholarship. Additionally, he was recognized as an Outstanding Graduate Student for the 2019-2020 academic year. His achievements in competitions include the Central China Second Prize in the China Sensor Innovation and Entrepreneurship Competition and multiple awards in electronic design competitions. These recognitions underscore his dedication to research excellence and innovation in engineering.

Research Focus

Saibo She’s research focuses on the design of eddy current array sensors and the evaluation of ferromagnetic materials, particularly through the study of hysteresis loops and Barkhausen magnetic noise. He is keenly interested in defect diagnosis and identification utilizing artificial intelligence algorithms, aiming to enhance the capabilities of non-destructive testing techniques. His work addresses challenges in materials science and engineering, particularly in improving the reliability and efficiency of sensor technologies. By integrating machine learning approaches into traditional testing methods, Saibo seeks to push the boundaries of current evaluation techniques. His research not only contributes to academic knowledge but also has practical implications for industries requiring advanced non-destructive testing solutions. Saibo’s commitment to innovation and his technical expertise position him as a leading researcher in the field, with the potential to significantly advance the understanding and application of electromagnetic testing methods.

Publication Top Notes

  • Flexible Differential Butterfly-Shape Eddy Current Array Sensor for Defect Detection of Screw Thread 📄
  • Flexible Floral Eddy Current Probe for Detecting Flaws in Metal Plate 📄
  • Optimal Design of Remote Field Eddy Current Testing Probe for Ferromagnetic Pipeline Inspection 📄
  • An Innovative Eddy Current Sensor with E-Core Ferrite Resistant to Lift-Off and Tilt Effects 📄
  • Inspection of Defects Depth for Stainless-Steel Sheets Using Four-Coil Excitation Sensor and Deep Learning 📄
  • Evaluation of Defects Depth for Metal Sheets Using Four-Coil Excitation Array Eddy Current Sensor and Improved ResNet18 Network 📄
  • Thickness Measurement and Surface-Defect Detection for Metal Plate Using Pulsed Eddy Current Testing and Optimized Res2Net Network 📄
  • Simultaneous Measurements of Metal Plate Thickness and Defect Depth Using Low Frequency Sweeping Eddy Current Testing 📄
  • Size-Distinguishing Miniature Electromagnetic Tomography Sensor for Small Object Detection 📄
  • Diffusion Velocity of Eddy Current in Metallic Plates Using Point-Tracing Method 📄
  • Temperature Monitoring of Vehicle Brake Drum Based on Dual Light Fusion and Deep Learning 📄

Conclusion

Saibo She is an excellent candidate for the Research for Best Researcher Award due to his impressive research accomplishments, innovative contributions, and strong leadership capabilities. By addressing the areas for improvement, such as expanding the practical impact of his research and enhancing interdisciplinary collaborations, he can further strengthen his profile. His trajectory indicates a promising future in research and innovation, making him a worthy recipient of this award.

 

 

Gokhan Basar | Mechanical Engineering | Best Researcher Award

Dr. Gokhan Basar | Mechanical Engineering | Best Researcher Award

Research Assistant at Industrial Engineering, Turkey

Dr. Gokhan Basar is a dedicated researcher and assistant professor in the Department of Industrial Engineering at Osmaniye Korkut Ata University, Turkey. Born on January 1, 1989, in Tarsus, Turkey, he has developed a strong academic and professional foundation in mechanical engineering. Dr. Basar holds a PhD in Mechanical Engineering, specializing in the production of reinforced aluminum matrix composites. He has contributed significantly to the field through his research on friction stir welding and optimization techniques, establishing himself as an expert in machinability and mechanical properties of materials. His commitment to advancing engineering knowledge is evident in his numerous publications and active participation in national and international conferences.

Profile:

Google Scholar

Strengths for the Award:

  1. Diverse Research Areas: Dr. Basar has an extensive range of research interests including Friction Stir Welding, machinability of materials, and optimization techniques. This diversity reflects a strong capability to contribute to various fields within engineering.
  2. Academic Qualifications: With a PhD in Mechanical Engineering and multiple relevant master’s and bachelor’s degrees, Dr. Basar possesses a solid educational foundation that underpins his research.
  3. Significant Contributions: His published works, including book chapters and numerous journal articles, indicate active engagement in research. The citation metrics (42 citations and an H-index of 4) highlight that his work is recognized and valued by the academic community.
  4. Research Methodology Expertise: Dr. Basar’s proficiency in experimental design and optimization methods, particularly the Taguchi Method and Grey Relational Analysis, showcases his ability to apply advanced statistical techniques to real-world engineering problems.
  5. Active Conference Participation: Regular attendance at national and international conferences demonstrates a commitment to staying updated with the latest developments in his field and sharing his findings with the broader scientific community.
  6. Journal Refereeing: Serving as a referee for multiple reputable journals illustrates his involvement in the academic process and recognition by peers.

Areas for Improvement:

  1. Increased Collaboration: While Dr. Basar has a solid publication record, collaboration with researchers from diverse fields could enhance the breadth and impact of his research.
  2. Enhancing Citation Impact: Although his citation metrics are commendable, focusing on publishing in high-impact journals could further increase his visibility and citation rate.
  3. Broader Public Engagement: Engaging with industry stakeholders and public forums could help translate his research findings into practical applications, increasing societal impact.
  4. Exploration of Emerging Technologies: Staying abreast of emerging technologies in materials science and mechanical engineering could provide new avenues for research and innovation.

Education:

Dr. Gokhan Basar’s educational journey began with a Bachelor’s degree in Mechanical Engineering, which laid the groundwork for his advanced studies. He earned his MSc in Mechanical Engineering from Iskenderun Technical University (2013-2016), where he focused on optimizing welding parameters in friction stir welding. His research culminated in a thesis that highlighted his proficiency in practical applications of engineering principles. Dr. Basar continued his academic pursuit at Osmaniye Korkut Ata University, where he completed his PhD in Mechanical Engineering (2017-2023). His doctoral research investigated the production of SiC and B4C particle-reinforced aluminum matrix composites through powder metallurgy, further showcasing his ability to innovate in materials engineering. Throughout his academic career, Dr. Basar has demonstrated a strong commitment to educational excellence and research development.

Experience:

Dr. Gokhan Basar has amassed extensive experience in academia, starting his career as a Research Assistant in the Department of Mechanical Engineering at Iskenderun Technical University from 2013 to 2016. His responsibilities included conducting research, assisting in teaching, and engaging in various engineering projects. In 2016, he transitioned to Osmaniye Korkut Ata University, where he currently serves as a Research Assistant in the Department of Industrial Engineering. In this role, Dr. Basar has focused on advancing knowledge in the fields of friction stir welding, materials machinability, and optimization methods. He has participated in numerous conferences, enhancing his professional network and contributing to the scientific community. His dedication to research and education has positioned him as a prominent figure in mechanical engineering, with a strong emphasis on innovative practices and experimental design.

Research Focus:

Dr. Gokhan Basar’s research focuses primarily on advanced welding techniques, particularly Friction Stir Welding (FSW), and the machinability and mechanical properties of materials. His expertise extends to optimization methods, including the Taguchi Method, Response Surface Methodology, and Grey Relational Analysis, enabling him to develop effective strategies for improving material performance and process efficiency. He is particularly interested in the production of composite materials, investigating the use of SiC and B4C particles in aluminum matrices to enhance their mechanical properties. His research also includes the design of experiments and multi-response optimization, providing insights into surface quality and operational parameters in various manufacturing processes. Dr. Basar’s commitment to innovation in mechanical engineering drives his work to address contemporary challenges and contribute to the evolution of engineering practices.

Publications Top Notes:

  1. Optimization of machining parameters in face milling using multi-objective Taguchi technique 📄
  2. Modeling and optimization of face milling process parameters for AISI 4140 steel 📄
  3. Determination of the optimum welding parameters for ultimate tensile strength and hardness in friction stir welding of Cu/Al plates using Taguchi method 📄
  4. Optimization of cutting parameters in hole machining process by using multi-objective Taguchi approach 📄
  5. Modeling and optimization for fly ash reinforced bronze-based composite materials using multi-objective Taguchi technique and regression analysis 📄
  6. Multi-response optimization in drilling of MWCNTs reinforced GFRP using grey relational analysis 📄
  7. Delik İşleme Prosesinde Kesme Parametrelerin Taguchi Metodu ve Regresyon Analiz Kullanılarak Modellenmesi ve Optimizasyonu 📄
  8. Kolemanit ve Boraks Takviyeli Fren Balatalarının Sürtünme Performansı 📄
  9. Sıcak presleme yöntemi ile üretilmiş uçucu kül takviyeli bronz matrisli fren balata malzemelerinin sürtünme-aşınma özellikleri üzerine kolemanit miktarının etkisi 📄
  10. Mathematical Modeling and Optimization of Milling Parameters in AA 5083 Aluminum Alloy 📄
  11. 316L Paslanmaz Çeliklerin Frezeleme işlemindeki Yüzey Pürüzlülüğün ANFIS ile Modellenmesi 📄
  12. Bronz Esaslı Kompozit Sürtünme Malzemelerin Üç Nokta Eğme Mukavemetinin Taguchi Metodu ile Optimizasyonu 📄
  13. Statistical Investigation of the Effect of CO2 Laser Cutting Parameters on Kerf Width and Heat Affected Zone in Thermoplastic Materials 📄
  14. A new hybrid meta-heuristic optimization method for predicting UTS for FSW of Al/Cu dissimilar materials 📄
  15. Prediction of surface hardness in a burnishing process using Taguchi method, fuzzy logic model and regression analysis 📄
  16. Multi-objective optimization of cutting parameters for polyethylene thermoplastic material by integrating data envelopment analysis and SWARA-based CoCoSo approach 📄
  17. Kompozit Malzemelerin Delme İşleminde İtme Kuvvetinin Taguchi Metodu ile Optimizasyonu ve Regresyon Analizi ile Tahmini 📄
  18. Tepki yüzeyi metodolojisi kullanılarak nanokompozitin delinmesinde oluşan itme kuvvetinin modellenmesi ve analizi 📄
  19. Analysis and Optimization of Ball Burnishing Process Parameters of AA 7075 Aluminium Alloy with Taguchi Method 📄
  20. The Effect of Colemanite and Borax Reinforced to the Friction Performance of Automotive Brake Linings 📄

Conclusion:

Dr. Gokhan Basar exemplifies the qualities of a strong candidate for the Research for Best Researcher Award. His extensive research experience, educational background, and contributions to the field of engineering position him as a noteworthy researcher. By focusing on collaboration, increasing his publication impact, and engaging with the broader community, he could further enhance his profile as a leading researcher. His commitment to advancing knowledge in his areas of expertise makes him a deserving candidate for this prestigious award.

Sanyogita Manu | Engineering and Technology | Best Researcher Award

Ms. Sanyogita Manu | Engineering and Technology | Best Researcher Award

PhD Candidate, The University of British Columbia, Canada

Publication Profile

Google scholar

Strengths for the Award

  1. Innovative Research Focus: Sanyogita’s work addresses a significant issue—indoor environmental quality during a time when many transitioned to remote work due to the pandemic. Her systematic study has the potential to inform guidelines and policies related to home office setups, highlighting its relevance in current public health discussions.
  2. Methodological Rigor: The research employs a robust methodology, utilizing continuous monitoring of various IEQ parameters alongside subjective assessments from participants. This comprehensive approach enhances the reliability of her findings.
  3. Professional Affiliations and Contributions: Sanyogita is actively engaged in professional organizations related to her field, serving on committees and reviewing journals. Her involvement in international conferences signifies her commitment to advancing research in IEQ and energy-efficient design.
  4. Publication Record: With multiple peer-reviewed publications and conference proceedings, Sanyogita demonstrates a solid track record in disseminating her research findings, contributing to the academic community’s understanding of indoor environments.
  5. Awards and Recognition: Her prior achievements and recognitions, including scholarships and awards, underscore her dedication and excellence in research.

Areas for Improvement

  1. Broader Impact Assessment: While her research is focused on WFH settings, there may be an opportunity to expand her study to include diverse populations and different geographical locations to enhance the generalizability of her findings.
  2. Interdisciplinary Collaboration: Collaborating with professionals from related fields such as psychology, sociology, or occupational health could enrich her research and offer a more holistic understanding of the WFH experience.
  3. Public Engagement: Engaging in public outreach or workshops to share her findings with broader audiences, including policymakers and the general public, could enhance the impact of her work and foster practical applications of her research.

Education

Sanyogita holds a Master’s degree in Interior Architecture and Design, specializing in Energy and Sustainability from CEPT University, India, where her dissertation focused on optimizing window performance in commercial buildings. She also earned her Bachelor’s degree in Interior Design from the same institution, with a dissertation exploring the thermal effects of furniture in interior environments. 🎓

Experience

With extensive experience in academia and research, Sanyogita has contributed to various projects assessing indoor environmental conditions and energy efficiency in buildings. She has served on several scientific committees and has been actively involved in peer review for reputable journals, reflecting her expertise in the field. 🏢

Research Focus

Her research primarily focuses on indoor environmental quality (IEQ) and its impact on occupant well-being and productivity, particularly in work-from-home settings. Sanyogita employs a systematic approach to evaluate both perceived and observed IEQ, utilizing a variety of environmental monitoring tools. 🔍

Awards and Honours

Sanyogita is a member of multiple prestigious organizations, including the International Society of Indoor Air Quality and Climate (ISIAQ) and the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). She has been recognized for her contributions to building performance simulation and energy conservation, reflecting her commitment to sustainable practices. 🏆

Publication Top Notes

Manu, S., & Rysanek, A. (under review). A novel dataset of indoor environmental conditions in work-from-home settings. Building and Environment.

Manu, S., & Rysanek, A. (2024). A Co-Location Study of 87 Low-Cost Environmental Monitors: Assessing Outliers, Variability, and Uncertainty. Buildings, 14(9), Article 9. Link

Manu, S., et al. (2024). A state-of-the-art, systematic review of indoor environmental quality studies in work-from-home settings. Building and Environment, 111652. Link

Doctor-Pingel, M., et al. (2019). A study of indoor thermal parameters for naturally ventilated occupied buildings in the warm-humid climate of southern India. Building and Environment, 151, 1-14. Link

Manu, S., et al. (2019). Performance evaluation of climate responsive buildings in India – Case studies from cooling dominated climate zones. Building and Environment, 148, 136-156. Link

Gupta, R., et al. (2019). Customized performance evaluation approach for Indian green buildings. Building Research & Information, 47(1), 56–74. Link

Conclusion

Sanyogita Manu’s research on indoor environmental quality in work-from-home settings is both timely and significant. Her methodological rigor, publication record, and active participation in professional communities demonstrate her dedication to advancing knowledge in her field. While there are areas for improvement, her strengths strongly position her as a worthy candidate for the Best Researcher Award. Her work has the potential to influence policy and improve well-being in residential work environments, making her contributions invaluable in today’s context.

Ahmed Deabs | Mechanical Engineering | Best Researcher Award

Assoc Prof Dr. Ahmed Deabs | Mechanical Engineering | Best Researcher Award

Production Engineering and Mechanical Design, Faculty of Engineering, Shebin Elkom, Menoufia University, Egypt

Ahmed Deabs is a dedicated academic and mechanical engineer with a strong background in production engineering and mechanical design. Currently, he serves as a Lecturer at the Faculty of Engineering, Menofia University, and an Adjunct Lecturer at Delta Technological University, Egypt. Ahmed’s expertise spans across CAD, FEM, machine design, and vibration signal processing, making him a versatile educator and researcher in the field.

Publication Profile

 

Strengths for the Award:

  1. Academic and Teaching Excellence: Ahmed Deabs has a strong academic background with significant teaching experience in various engineering disciplines. His ability to teach over 20 different courses, ranging from “Machine Tool Design” to “Engineering Mechanics,” highlights his versatility and expertise in Production Engineering and Mechanical Design.
  2. Research Contributions: He has several publications in reputable journals and conferences, showcasing his research in areas like CAD, FEM, and parallel robots. His work on topics like “Computer Aided Design of Multi-Stage Gearboxes” and “Optimizing Vertical Pump Reliability” demonstrates his commitment to advancing engineering knowledge.
  3. Industrial and Practical Experience: Ahmed’s involvement in industrial projects, including the design and supervision of mechanical systems like renewable electricity generation systems and industrial production lines, underscores his practical skills and ability to apply research in real-world scenarios.
  4. Technological Proficiency: His proficiency in various engineering and computer tools like SOLIDWORKS, AUTOCAD, MATLAB, and his certifications (e.g., CSWP, CSWA) further bolster his technical capabilities, making him a well-rounded candidate for the award.
  5. Community and Educational Outreach: Ahmed’s initiative in creating and managing free educational resources, including YouTube channels and forums, reflects his dedication to sharing knowledge and supporting the engineering community.

Areas for Improvement:

  1. Research Impact: While Ahmed has a solid number of publications, there could be a focus on increasing the impact and citation of his research. Engaging in more collaborative research projects and targeting high-impact journals could further elevate his academic profile.
  2. International Exposure: Expanding his research collaborations and academic presence internationally could enhance his recognition. Participation in more global conferences and partnerships with international researchers would be beneficial.
  3. Grant Acquisition: Increasing his involvement in competitive research projects and securing grants would demonstrate his capability to lead large-scale research initiatives, further supporting his candidacy for the award.

 

🎓 Education

Ahmed Deabs holds a solid academic foundation in engineering, beginning as a Demonstrator in the Production Engineering and Mechanical Design Department at Menofia University in 2012. He advanced to Assistant Lecturer in 2016 and became a Lecturer in 2022. He also began serving as an Adjunct Lecturer at Delta Technological University in 2023, broadening his teaching experience.

🛠️ Experience

Ahmed has an extensive teaching portfolio, having taught over 20 different courses across various engineering disciplines. His experience includes supervising laboratories, contributing to accreditation projects, and participating in continuous improvement initiatives at Menofia University. His industrial work includes freelance mechanical design and supervising machine fabrication processes for Egyptian and Arabic companies.

🔍 Research Focus

Ahmed’s research interests are diverse, including Computer-Aided Design (CAD), Finite Element Method (FEM), machine design, and parallel robots. He also explores advanced topics like artificial neural networks, deep learning, and vibration signal processing, contributing to the evolution of mechanical engineering.

🏆 Awards and Honors

Ahmed has been recognized for his contributions to engineering education and research, particularly through his involvement in continuous improvement projects and his role in updating laboratory instruments at Menofia University. He also holds several certifications, including SOLIDWORKS and AUTOCAD, reflecting his commitment to professional development.

📄 Publications

“Computer Aided Design of Multi-Stage Gearboxes”International Journal of Advanced Engineering and Global Technology (IJAEGT), Vol. 2, Issue 12, 2014. Cited by 11 articles Link to Publication

“Structural Modifications of 1K62 Engine Lathe Gearbox Casing”International Journal of Advanced Engineering and Global Technology (IJAEGT), Vol. 3, Issue 2, 2015. Cited by 9 articles Link to Publication

“Parallel Robot – Review Article”Journal of Engineering Science and Technology Review, 2021. Cited by 6 articles Link to Publication

“Assessment of Parallel Robot Dynamic Characteristics Using Experimental Modal Analysis and Finite Elements”The First International Conference in Technological University Education and its Role in Industry, Energy and Environmental Conservation (ICCTU 2022), 2022. Cited by 3 articles Link to Publication

Optimizing Vertical Pump Reliability: Investigating Main Shaft Challenges through Integrated Design and Testing StrategiesWater Science, 2024. Cited by 5 articles Link to Publication

 

Conclusion:

Ahmed Deabs is a strong candidate for the Researcher Award, given his extensive academic, research, and industrial contributions. His commitment to education, both in the classroom and through online platforms, alongside his technical expertise, makes him a well-rounded and deserving nominee. Focusing on increasing the impact of his research and expanding his international collaborations could further strengthen his candidacy. Overall, his achievements and contributions make him a suitable contender for the award.

 

 

 

Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto, Robert Bosch GmbH,  Germany

Ralston Pinto, born on October 31, 1994, in India, is a mechanical engineer specializing in modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. Currently pursuing a PhD at RWTH Aachen University in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, he focuses on predicting contact mechanics in manufactured cells. Ralston’s expertise extends to finite element methods, material subroutines, and automation using Python and MATLAB. He has also worked on process influences on sensing elements during his master’s thesis at Bosch and has substantial experience in project management from his tenure at Hamon Group in India. Ralston is driven by the challenge of solving real-time engineering problems and values environments that foster innovative thinking and professional growth.

Publication Profile

Orcid 

Education

Ralston Pinto is currently pursuing his PhD in Mechanical Engineering at RWTH Aachen University, with a project focused on modeling and simulation of SOFC contacts in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich. He holds a Master of Science in Mechanical Engineering from Rheinwaal University of Applied Sciences, where he studied process engineering, materials, and simulation, earning a final grade of 1.8. His master’s thesis focused on understanding process influences on crack failure modes in exhaust gas sensors. Ralston completed his Bachelor of Engineering in Mechanical Engineering from the University of Mumbai, specializing in structural mechanics, fluid mechanics, simulation and CAD, thermodynamics, and process engineering. His bachelor’s thesis involved designing and assembling a pedal-powered water purification vehicle to address water scarcity in rural India.

Experience 

Ralston Pinto is currently engaged in doctoral research at Robert Bosch GmbH in Bamberg, Germany, focusing on the modeling and simulation of SOFC contacts using finite element methods. His work involves investigating the pressures on Solid Oxide Cell contacts and developing material subroutines for anisotropic plasticity. Previously, he completed a master’s thesis at Bosch in Stuttgart, Germany, exploring crack failure modes in exhaust gas sensors. Ralston also interned at Bosch, working on developing protective coatings for sensor elements. His early career includes a position as an Assistant Project Engineer at Hamon Group in Mumbai, India, where he coordinated national-level power sector projects, managed resource allocation, and controlled production processes. His diverse experiences have equipped him with a unique understanding of both project management and hands-on engineering tasks.

Awards and Honors

Ralston Pinto has been recognized for his academic excellence and professional contributions. He received the Deutschland Stipendium from the Bundesministerium für Bildung und Forschung, awarded for his outstanding academic performance at Rheinwaal University of Applied Sciences. This prestigious scholarship is given to students who demonstrate exceptional academic achievements and social commitment. During his tenure at Bosch, Ralston was involved in significant research projects that led to the implementation of his findings in the field. His contributions to the modeling and simulation of SOFC contacts and process influences on sensor failure modes have been well-received in the scientific community. Ralston’s dedication to solving real-world engineering problems and his innovative approach to research have earned him accolades and recognition from both academic and professional circles.

Research Focus 

Ralston Pinto’s research primarily focuses on the modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. His doctoral thesis at RWTH Aachen University, in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, aims to predict the contact mechanics of manufactured cells, incorporating non-ideal aspects like tolerance distributions and uneven profiles. Ralston employs finite element methods, homogenization techniques, and anisotropic plasticity subroutines in his simulations. He also integrates Python and MATLAB for automation and data generation, utilizing machine learning methods for optimization. His master’s research at Bosch involved understanding process influences on crack failure modes in exhaust gas sensors, where he developed experimental methods and analyzed empirical data. Ralston’s broad research interests include computational fluid dynamics (CFD), materials science, process engineering, and the development of innovative solutions for real-world engineering challenges.

Publication Top Notes

A constitutive model for homogenized solid oxide cell contacts with dimensional tolerances

Homogenization of fuel cell interconnects to determine the contacting configuration in a stack