Providence Habumuremyi | Civil Engineering | Best Researcher Award

Dr. Providence Habumuremyi | Civil Engineering | Best Researcher Award

Postdoctoral Fellow, Fuzhou University, China.

Dr. Providence Habumuremyi, born on January 1, 1988, in Rwanda, is a distinguished civil engineer specializing in tunnel stability and geotechnical engineering. Currently a postdoctoral fellow at Fuzhou University, China, he earned his Doctor of Engineering from Beijing Jiaotong University, focusing on three-dimensional analytical methods for tunnel face stability in undrained clay grounds. His academic journey includes a Master’s degree in Civil Engineering from the same university and a Bachelor’s degree from the University of Rwanda. Dr. Habumuremyi’s professional experience spans roles such as Civil Engineer at Beijing Jinghangan Airport Engineering Co., Ltd., contributing to international airport projects in the Maldives and Zambia. His multilingual abilities and cross-cultural experiences enhance his collaborative research endeavors. Recognized for his analytical skills and innovative approaches, Dr. Habumuremyi continues to impact the field through research, publications, and contributions to major engineering projects.

Profile

Orcid

🎓 Education

  • Doctor of Engineering in Civil Engineering
    Beijing Jiaotong University, China (09/2019 – 06/2024)
    Dissertation: Three-Dimensional Analytical Continuous Upper Bound Limit Analyses for Face Stability of Shallow Shield Tunneling in Undrained Clay Ground
    Supervisor: Prof. Yan-Yong Xiang

  • Master of Engineering in Civil Engineering
    Beijing Jiaotong University, China (09/2015 – 06/2017)
    Thesis: Friction Pendulum Systems for Seismic Isolation of Structures in Near-Fault Regions
    Supervisor: Prof. Lin LiuResearcher Discovery+1AGRIS+1

  • Bachelor of Science in Civil Engineering
    University of Rwanda (01/2011 – 08/2014)
    Supervisor: Prof. Park Ildong

🏗️ Experience

  • Postdoctoral Researcher
    Fuzhou University, China (11/2024 – Present)
    Research Focus: Tunnel stability, ground and structural dynamics, geotechnical engineering.

  • Inspector
    Beijing Jianyetong Engineering Testing Technology Co., Ltd. (07/2024 – 11/2024)
    Responsibilities: Preparation of construction drawings, on-site surveying, attending technical meetings.

  • Civil Engineer
    Beijing Jinghangan Airport Engineering Co., Ltd. (07/2017 – 09/2019)
    Projects: Expansion of Maldives Velana International Airport; Construction of Ndola Simon Mwansa Kapwepwe International Airport, Zambia.
    Responsibilities: Preparation of construction drawings, site supervision, technical meetings, translation of technical documents (Chinese to English).

  • Director of Studies
    Collegio Santo Antonio Maria Zaccaria (01/2015 – 09/2015)
    Responsibilities: Supervision of teachers, curriculum implementation follow-up, teaching Mathematics, Physics, Technical Drawing, Scaffolding.

🔬 Research Focus 

Dr. Habumuremyi’s research centers on the stability analysis of tunnel faces, particularly in undrained clay conditions. He employs analytical and computational methods, including three-dimensional upper bound limit analyses, to assess and enhance the safety of shallow shield tunneling operations. His work extends to geotechnical engineering, focusing on soil-structure interaction, and the dynamics of structures under seismic loading. By integrating tools like MATLAB, SAP2000, ABAQUS, and OPTUM G2 & G3, he develops models that predict structural responses to various geotechnical challenges. His interdisciplinary approach aims to improve construction practices and inform the design of resilient infrastructure.

📚 Publication Top Notes

1. A 3-D Analytical Continuous Upper Bound Limit Analysis for Face Stability of Shallow Shield Tunneling in Undrained Clays

Journal: Computers and Geotechnics, December 2023
DOI: 10.1016/j.compgeo.2023.105779
Authors: Providence Habumuremyi, Yanyong Xiang

Summary:
This paper introduces a three-dimensional (3D) analytical upper bound limit method to evaluate face stability in shallow shield tunneling through undrained clay. Unlike previous two-dimensional models, the authors developed a 3D continuous velocity field based on a logarithmic spiral failure mechanism, offering more accurate predictions. The method considers various tunnel depths, diameters, and face pressures.

Key Contributions:

  • Developed a new continuous 3D velocity field using upper bound limit analysis.

  • Applied to shield tunneling in undrained clay (e.g., soft cohesive soil in urban areas).

  • Validated against numerical simulations (ABAQUS), showing good agreement.

  • Provided design charts for practicing engineers.

Relevance:
This model improves the safety and efficiency of tunnel construction in soft ground by offering realistic estimations of the support pressure required to prevent face collapse.

2. Determining Trigger Factors of Soil Mass Failure in a Hollow: A Study Based in the Sichuan Province, China

Journal: CATENA, September 2022
DOI: 10.1016/j.catena.2022.106368
Authors: Jules Maurice Habumugisha, Ningsheng Chen, Mahfuzur Rahman, Providence Habumuremyi, Etienne Tuyishimire, et al.

Summary:
This study investigates the main triggering factors of soil mass failure (landslides) in a specific hollow area of Sichuan Province, China. It uses field data, geostatistics, and geotechnical analysis to assess slope failure causes. Key parameters include slope angle, rainfall, vegetation cover, and soil composition.

Key Contributions:

  • Combined field sampling, laboratory testing, and remote sensing.

  • Identified critical depth and shear strength thresholds for failure.

  • Proposed mitigation techniques, including improved land management and vegetative cover.

Relevance:
Essential for improving slope stability prediction and disaster risk reduction in landslide-prone mountainous regions.

3. Friction Pendulum Systems for Seismic Isolation of Structures in Near-Fault Regions

Type: Master’s Thesis
Date: May 20, 2017
DOI: 10.13140/RG.2.2.19943.15527
Author: Providence Habumuremyi

Summary:
This thesis evaluates the performance of Friction Pendulum Systems (FPS) for seismic isolation in buildings located in near-fault zones. Near-fault ground motions can be intense and impulsive, posing challenges to conventional structural designs. The study uses numerical simulations in SAP2000 to demonstrate how FPS can effectively decouple structures from strong ground motions.

Key Contributions:

  • Designed FPS models for medium-rise buildings.

  • Compared base-isolated structures with fixed-base ones under near-fault motion.

  • Showed significant reduction in base shear and inter-story drift with FPS.

Relevance:
Supports the use of FPS isolation technology in earthquake engineering, particularly for civil infrastructure near seismic faults.

4. Mitigation Measures for Wind Erosion and Sand Deposition in Desert Railways: A Geospatial Analysis of Sand Accumulation Risk

  • Journal: Sustainability, April 29, 2025

  • DOI: 10.3390/su17094016

  • Authors: Mahamat Nour Issa Abdallah, Tan Qulin, Mohamed Ramadan, Providence Habumuremyi

Summary:

This study presents a comprehensive geospatial analysis aimed at identifying and mitigating the risks associated with wind erosion and sand deposition along desert railway corridors. Utilizing advanced GIS tools and remote sensing data, the research identifies high-risk zones where sand accumulation poses significant threats to railway infrastructure. The authors evaluate various mitigation strategies, including the implementation of sand fences, vegetation barriers, and optimized track alignments, to reduce the impact of aeolian processes on railway operations.

Key Contributions:

  • Development of a geospatial risk assessment model for sand accumulation along railway lines.

  • Identification of critical zones susceptible to wind-induced sand deposition.

  • Evaluation of mitigation measures and their effectiveness in different environmental contexts.

  • Recommendations for integrating geospatial analysis into railway planning and maintenance strategies.

Relevance:

The findings offer valuable insights for railway engineers and planners working in arid regions, providing tools and strategies to enhance the resilience of railway infrastructure against wind erosion and sand deposition.

5. Atom Search Optimization: A Systematic Review of Current Variants and Applications

  • Journal: Knowledge and Information Systems, April 12, 2025

  • DOI: 10.1007/s10115-025-02389-3

  • Authors: Sylvère Mugemanyi, Zhaoyang Qu, François Xavier Rugema, Yunchang Dong, Lei Wang, FĂ©licitĂ© Pacifique Mutuyimana, Emmanuel Mutabazi, Providence Habumuremyi, Rita ClĂ©mence Mutabazi, et al.

Summary:

This comprehensive review delves into the Atom Search Optimization (ASO) algorithm, a nature-inspired metaheuristic optimization technique. The paper systematically categorizes existing variants of ASO, analyzing their structural modifications, performance enhancements, and application domains. It also highlights the algorithm’s adaptability in solving complex optimization problems across various fields, including engineering design, machine learning, and operational research.

Key Contributions:

  • Classification and analysis of existing ASO variants and their respective enhancements.

  • Evaluation of ASO’s performance in comparison to other optimization algorithms.

  • Identification of application areas where ASO has been effectively employed.

  • Discussion on the challenges and future research directions in the development of ASO algorithms.

Relevance:

For researchers and practitioners in optimization and computational intelligence, this review serves as a valuable resource, offering a consolidated understanding of ASO’s capabilities and guiding future developments in the field.

Conclusion

Dr. Providence Habumuremyi presents a compelling case as a highly promising and accomplished early-career researcher in civil and geotechnical engineering. His strong academic foundation, international research contributions, publication record, and multilingual competence support his suitability for the Best Researcher Award. While there is room to grow in terms of independent research leadership and impact-driven dissemination, his trajectory indicates a strong upward path in academic and engineering research.

Shubham Jaiswal | Construction Award | Best Researcher Award

Mr Shubham Jaiswal | Construction Award | Best Researcher Award

Mr Shubham Jaiswal, University of Birmingham ,United Kingdom

Shubham Jaiswal is a PhD candidate in Civil Engineering at the University of Birmingham, focusing on Construction 4.0 applications in developing countries. With a Master’s in Construction Management from Pune University, India, and a background in Civil Engineering, he has actively researched cost overruns in real estate projects and anaerobic digestion for biogas production. Shubham’s academic journey includes a Diploma in Civil Engineering and a Bachelor’s from Sant Gadge Baba Amravati University. He is skilled in AutoCAD, MS Office, and project management software, complemented by strong communication abilities. Outside academia, Shubham enjoys swimming, singing, and playing the Cajon box. His professional experiences include roles in student placement coordination and organizing national conferences. Currently, his research interests lie in advancing sustainable construction practices and infrastructure development in underserved regions.

Publication Profile

Orcid

Education

Shubham  Jaiswal holds a PhD candidacy in Civil Engineering at the University of Birmingham since March 2023. He completed his Master’s in Construction Management at Pune University, India, achieving a CGPA of 8.07, and earned a Bachelor’s in Civil Engineering from Jagadambha College of Engineering and Technology with a CGPA of 8.11. His academic journey began with a Diploma in Civil Engineering from Government Polytechnic Yavatmal. Shubham has also undertaken specialized training in AutoCAD and project management software, enhancing his technical skills. His educational pursuits reflect a commitment to advancing knowledge in sustainable infrastructure and construction practices, particularly in addressing challenges faced by developing countries.

Experience 

Shubham Jaiswal brings diverse academic and professional experiences to his role. He served as Student Placement Coordinator at Jagadambha College of Engineering and Technology, Yavatmal, Maharashtra, India, overseeing student career development initiatives. Additionally, he contributed significantly as an organizing committee member for the national conference ‘XPLORE-17’. Shubham’s research journey includes investigating factors contributing to cost overruns in Indian real estate projects and exploring anaerobic digestion for biogas production from cow dung slurry. He has also conducted feasibility studies on innovative construction materials like jute fiber and artificial sand. These experiences underscore his dedication to bridging theoretical knowledge with practical applications in civil engineering, aiming to enhance infrastructure sustainability and efficiency.

Research focus

Shubham  Jaiswal’s research focuses on advancing Construction 4.0 methodologies in developing countries, particularly in improving construction efficiency and sustainability. His current PhD research at the University of Birmingham explores the application of digital technologies and automation to optimize infrastructure development processes. Previously, his studies have addressed critical issues such as cost overruns in real estate projects and innovative approaches to waste management through biogas production. Shubham is committed to leveraging his expertise in civil engineering and construction management to propose viable solutions that cater to the unique challenges faced by emerging economies. His work aims to foster inclusive and sustainable development practices that prioritize environmental stewardship and community well-being.

Publication Top Notes

“Construction 4.0: A Systematic Review of Its Application in Developing Countries”

 

Grzegorz Swit | Civil Engineering Award | Best Researcher Award

Prof Grzegorz Swit | Civil Engineering Award | Best Researcher Award

Prof Grzegorz Swit, Kielce University of Technology,Poland

🌍 Prof. Grzegorz  Ĺšwit, born on January 29, 1971, in Kielce, is a Polish civil engineer and full professor at Kielce University of Technology. With a Ph.D. and habilitation in technical sciences, he specializes in building structures. He serves as Dean of the Faculty of Construction and Architecture and heads the Department of Strength of Building Materials and Structures. His expertise spans project management (PRINCE2®), foreign languages (English B2, Russian B1), and accreditation auditing. Ĺšwit collaborates extensively with industry leaders like Polska Spółka Gazownictwa and “CIECH” S.A., focusing on R&D and production continuity projects. 🏗️

Publication Profile

Orcid

Education

prof Grzegorz  Ĺšwit, a civil engineer graduated from Kielce University of Technology in 1994, expanded his expertise with an MSc in construction, specializing in Building Structures in 1996. Continuing his academic journey, he earned a doctorate in technical sciences in 2001 and further achieved habilitation in 2012, all from Kielce University of Technology. Recognized as a full professor by the President of Poland in 2021, Ĺšwit’s career embodies dedication to academia and research in building materials and structures. 🏗️

Experience

Prof Grzegorz Świt has been an integral part of Kielce University of Technology since February 1993, starting as a full-time engineer and technical staff until 1995 with grants from Professors L. Gołaski and Z. Kowal. He progressed through roles as an assistant and assistant professor in the Department of Strength of Materials until 2013, when he became a full professor. Since 2020, he has led the Department of Strength of Building Materials and Structures and served as Dean of the Faculty of Construction and Architecture (2020-2024). Appointed as a Full Professor by the President of Poland in 2021, Świt also contributes as an independent technical auditor at the Polish Accreditation Center. 🏢

Research Focus

👨‍🏫 Grzegorz Świt is a Dean and Full Professor at Kielce University of Technology, Poland. His research focuses on the application of the acoustic emission method for structural health monitoring, with significant contributions to materials science and engineering. He has authored numerous articles and conference papers, exploring topics such as non-destructive testing methods, fracture mechanics, and smart city infrastructure. Grzegorz is actively involved in advancing innovative engineering solutions, particularly in monitoring the quality and integrity of steel and composite structures using experimental and numerical approaches. 📚🔬

Publication Top Notes