Manish Choudhary | Plastics Waste to Activated Carbon | Best Researcher Award

Dr. Manish Choudhary | Plastics Waste to Activated Carbon | Best Researcher Award

Assistant Professor, Central Institute of Petrochemicals Engineering and Technology, India

Dr. Manish Choudhary is an Assistant Professor in Chemical Engineering at CIPET: IPT Lucknow, with a Ph.D. in Chemical Engineering from Dr. APJ Abdul Kalam Technical University. He also holds an M.Tech. from IIT Roorkee. Dr. Choudhary’s career is marked by a strong passion for teaching, research, and academic administration. He has published seven papers in SCI & Scopus indexed journals, focusing on topics such as polymer composites, recycling, and biomass thermodynamics. He has delivered invited talks at international conferences and mentors students for higher education and industry collaboration. Dr. Choudhary’s contributions to improving educational programs, such as hybrid classrooms and industry-academic ties, showcase his dedication to fostering student growth and innovation. His recognition spans across various academic and professional milestones, making him a noteworthy figure in the field of chemical engineering and environmental sustainability.

Profile

Education

Dr. Manish Choudhary completed his Ph.D. in Chemical Engineering from Dr. APJ Abdul Kalam Technical University (2019-2023). He earned his M.Tech. in Chemical Engineering from IIT Roorkee (2010-2012), a prestigious institute known for its excellence in engineering education and research. Prior to that, he obtained his B.Tech. in Chemical Engineering from UPTU (2005-2009). Dr. Choudhary’s academic journey reflects a solid foundation in chemical engineering principles, focusing on sustainable growth and innovative solutions in various sectors, including polymer composites and waste management. His advanced studies have equipped him with the expertise to conduct high-impact research, contribute to educational reforms, and engage in global academic discussions. His education from these esteemed institutions has been instrumental in shaping his career as a researcher and educator dedicated to both academic and professional excellence.

Experience

Dr. Manish Choudhary has accumulated extensive teaching and administrative experience at CIPET: IPT Lucknow. As an Assistant Professor since 2017, he has been instrumental in teaching both undergraduate and postgraduate students, with a focus on Chemical Engineering topics such as Thermodynamics, Heat and Mass Transfer, and Polymer Composites. Dr. Choudhary has played a pivotal role in academic and accreditation work, including NBA, NAAC, and NIRF-related activities. He is also a coordinator for ATAL FDPs and has introduced hybrid classroom learning to adapt to modern educational trends. Furthermore, Dr. Choudhary has been a mentor for student startups like SNOWFLAKE, facilitating innovation and industry collaboration. Previously, he served as a Lecturer (2012-2017), where he contributed to student development, extracurricular activities, and accreditation processes. His leadership has enhanced the overall quality of education and student engagement at CIPET, making him a valuable asset to the institution.

Research Focus

Dr. Manish Choudhary’s research primarily revolves around sustainable technologies, focusing on thermodynamics, biomass recycling, and polymer composites. His work in thermal degradation and kinetics of various biomass materials, such as rice husk and sun hemp, aims to improve waste management processes and environmental sustainability. He has conducted in-depth studies on the modification and characterization of agricultural waste for its use in polymer composites, with a strong emphasis on mechanical, thermal, and morphological properties. Dr. Choudhary also explores eco-friendly solutions for industrial safety and hazard management, contributing to safer manufacturing processes. His publications in SCI & Scopus indexed journals underline his contribution to advancing knowledge in chemical engineering and sustainable development. He is committed to applying his research to practical solutions for waste valorization, recycling, and the development of renewable materials. His future research trajectory is focused on improving sustainability practices and enhancing the circular economy in various industries.

Publication Top Notes

  1. Thermal kinetics and morphological investigation of alkaline treated rice husk biomass 🌾🔥
    Journal of the Indian Chemical Society, 2022

  2. Determination of thermal degradation behavior and kinetics parameters of chemically modified sun hemp biomass 🌿⚗️
    Bioresource Technology, 2023

  3. Impact of various surface modifications on agro waste rice husk and its reinforced polymer composites ♻️🔬
    Materials Today: Proceedings, 2021

  4. Study on mechanical, thermal and morphological properties of RHA filled PVC composite 🏗️🔍
    International Journal of Scientific Engineering and Applied Science, 2015

  5. Thermal and mechanical investigation of chemically treated hybrid biomass epoxy bio-composite: an approach of pyrolysis kinetics 🔬🔥
    Bioresource Technology Reports, 2023

  6. Kinetics modeling & comparative examine on thermal degradation of alkali treated Crotalaria juncea fiber using model fitting method 🔥🧬
    Journal of the Indian Chemical Society, 2023

  7. Sustainable valorization of rice husk: thermal behavior and kinetics after chemical treatments ♻️🌾
    Biomass Conversion and Biorefinery, 2023

  8. Phyto-Pharmacognostical and Hypocholesterolemic Activity of Morus alba L. 🌱🧪
    European Chemical Bulletin, 2023

 

 

 

 

Koziba Gaothobogwe | Environmental Science | Young Scientist Award

Ms. Koziba Gaothobogwe | Environmental Science | Young Scientist Award

MSc Student. Botswana International University of Science and Technology, Botswana

Koziba Gaothobogwe is a dedicated MSc student in Environmental Science (Soil Science) at Botswana International University of Science and Technology (BIUST). With a passion for addressing environmental contamination, particularly in agricultural land, her research focuses on mitigating potentially toxic elements (PTEs) in food crops. She has gained international exposure through the Sakura Exchange Program in Japan, where she presented her research on emerging pollutants and developed hands-on skills in advanced environmental analysis. Koziba’s academic journey is supported by her teaching assistantship at BIUST, where she mentors undergraduate students in soil science, environmental hazards, and waste management. Committed to sustainability, she aims to apply her knowledge to tackle soil and water contamination issues in Botswana and beyond.

Profile

Scopus

Education

Koziba Gaothobogwe earned her BSc in Environmental Science from Botswana International University of Science and Technology (BIUST) in 2021, where her project focused on analyzing the physico-chemical characteristics of surface and groundwater near the Morupule Power Station. Currently, she is pursuing an MSc in Soil Science at BIUST, with a thesis dedicated to mitigating the impact of potentially toxic elements (PTEs) in food crops grown near the BCL Cu-Ni mine using soil amendments. Throughout her studies, Koziba has developed a strong foundation in environmental science, particularly in soil chemistry, water quality analysis, and environmental remediation strategies. Additionally, she has completed various professional training courses in Geographic Information Systems (GIS), image classification, and spatial data science through the Environmental Systems Research Institute (ESRI), enhancing her research capabilities in environmental monitoring and analysis.

Experience

Koziba Gaothobogwe has diverse research and teaching experience in the field of environmental science. As a teaching assistant at Botswana International University of Science and Technology (BIUST), she has been instrumental in supervising undergraduate laboratory sessions on environmental pollution, soil science, microbiology, and waste management. Her responsibilities include tutoring, grading, and ensuring compliance with institutional policies. As a research assistant, she assisted in designing experiments, performing soil and water sample analyses, and utilizing statistical tools to interpret environmental data. Her international exposure as a visiting scholar in the Sakura Exchange Program at Kyoto University, Japan, broadened her skills in environmental analysis techniques such as FTIR, ICP-MS, and SEM. Koziba has also contributed significantly to academic research through her project focused on mitigating contamination in agriculture, with her findings expected to influence sustainable farming practices in contaminated areas.

Research Focus

Koziba Gaothobogwe’s research focuses on the mitigation of potentially toxic elements (PTEs) in agricultural systems, particularly the impact of soil amendments on food crops grown in contaminated soils. Her MSc thesis explores how soil amendments can reduce the bioavailability of toxic elements like heavy metals in crops near mining areas, with a focus on BCL Cu-Ni mine in Botswana. Through her research, Koziba aims to develop practical, sustainable solutions to improve soil health and reduce the environmental risks posed by mining activities. Her interest extends to the broader field of environmental science, including water quality analysis, environmental impact assessments, and remediation strategies. Additionally, her work in environmental chemistry seeks to advance analytical methods for detecting and quantifying pollutants in soil, water, and plant matrices, making her research valuable for both environmental policy and agricultural sustainability.

Publications

  • Mitigation of Potentially Toxic Elements in Corn (Zea Mays) Grown in Farmlands Near Cu-Ni Mine in Central BotswanaSoil and Sediment Contamination (2025)

 

 

 

Young Min JO | Environmental engineering | Environmental Engineering Award

Prof . Young Min JO | Environmental engineering | Environmental Engineering Award

Professor, Kyung Hee University, South Korea

Dr. Young Min Jo is a Professor at the Department of Environmental Engineering at Kyung Hee University in South Korea. With a career spanning over two decades, he has made significant contributions to environmental science, particularly in air pollution control and indoor air quality. His expertise includes dust filtration, CO2 capture, odor and VOC control, and energy material synthesis. Dr. Jo holds a Ph.D. in Chemical Engineering from the University of New South Wales, Australia, and has worked as a researcher and professor at various renowned institutions globally. He is also an active participant in environmental policy discussions, serving in various leadership roles in professional societies such as the Korean Society of Odor Environment. Dr. Jo’s commitment to research and teaching has earned him numerous accolades and recognition in the field of environmental engineering.

Profile:

Orcid

Scopus

Education:

Dr. Young Min Jo completed his academic journey with a focus on Chemical Engineering. He earned his Ph.D. in Chemical Engineering from the University of New South Wales (UNSW), Australia, in 1997. Prior to this, he obtained both his M.S. (1986) and B.S. (1984) degrees from Korea University, where he specialized in Chemical Engineering. His strong academic background laid the foundation for his future career in environmental science and engineering, where he has contributed to research, education, and policy. Throughout his education, Dr. Jo was exposed to a diverse range of topics that span chemical engineering and environmental sustainability, with a particular emphasis on air pollution control and energy systems. His education at leading institutions has provided him with the theoretical and practical knowledge necessary to address pressing environmental challenges.

Experience:

Dr. Young Min Jo has extensive experience in both academia and research. He has been a Professor at Kyung Hee University, South Korea, since 1998, shaping the next generation of environmental engineers. His academic journey also includes prestigious international roles, such as a Visiting Fellow at the Toyama National Institute of Technology (2014-2015) and a Visiting Researcher at the University of Missouri at Rolla (2005-2006). Dr. Jo’s early career includes research positions at the Environmental Research Center of National University of Singapore (1997-1998) and the Center for Particle & Catalysis at UNSW (1996). He also worked as a researcher at Daewoo Electronics Ltd., Korea (1986-1991), contributing to industrial applications. Throughout his career, Dr. Jo has collaborated on various international projects and research initiatives, earning recognition for his expertise in environmental pollution control, air quality, and sustainable energy solutions.

Awards and Honors:

Dr. Young Min Jo has earned several accolades for his contributions to environmental engineering. As Vice President of the Korean Society of Odor Environment (2022-present), he has led initiatives to address odor-related environmental concerns. He served as the Chairman of i-CIPEC (2019-2020), further solidifying his leadership in the environmental field. Dr. Jo has also been a Director of the Center for Environmental Studies (2018-2021) and the Environmental Education Center of Gyeonggi-do (2018-2019), demonstrating his commitment to environmental education and public awareness. In addition, he holds a Senior Consultant position at the National Institute of Environment Research (2017-present) and serves as an Advisory Member of the Korea Air Cleaning Association. These roles reflect his ongoing influence in shaping environmental policy and research in South Korea, earning him recognition for his expertise in air quality and pollution control.

Research Focus:

Dr. Young Min Jo focuses on environmental challenges, with a particular emphasis on air pollution control, indoor air quality monitoring, and energy material synthesis. His research encompasses a variety of topics, including dust filtration, CO2 capture, and odor & VOC control, which are crucial for mitigating pollution in urban environments. He also investigates the health implications of particulate matter and its effects on indoor environments, including classroom air quality. Another key area of his research is the synthesis of sustainable energy materials that can contribute to cleaner, more efficient energy solutions. Dr. Jo’s work on activated carbon materials, particularly bamboo-based activated carbon for CO2 adsorption, highlights his efforts to develop sustainable solutions for indoor air quality. His interdisciplinary approach integrates environmental engineering, materials science, and health sciences, offering valuable insights into improving air quality and sustainability in both indoor and outdoor environments.

Publication Titles :

  1. Correlation between carbonaceous materials and fine particulate matters in urban school classrooms 📚💨
  2. Effects of surrounding environment and student activity on the concentration of particulate matter in elementary school classrooms in South Korea 🏫🌫️
  3. Synthesis of Hydroxylammonium Nitrate and Its Decomposition over Metal Oxide/Honeycomb Catalysts ⚗️💥
  4. Fabrication of Bamboo-Based Activated Carbon for Low-Level CO2 Adsorption toward Sustainable Indoor Air 🌱🌀
  5. Preparation and Characterization of Bamboo-based Activated Carbon for Low-level CO2 Adsorption 🍃🧪
  6. Subchronic pulmonary toxicity of ambient particles containing cement production–related elements 💨⚠️
  7. Removal of Ammonia, Hydrogen Sulfide, and Methyl Mercaptan as Livestock Odor Using a Low-energy (0.2 MeV) Electron Beam Accelerator 🐄💨
  8. Air Quality Index through Inverse Evaluation of Hazard Quotient for Public Indoor Facilities-schools, child daycare centers and elderly nursing homes 🏢🏫
  9. Subway station dust-induced pulmonary inflammation may be due to the dysfunction of alveolar macrophages: Possible contribution of bound elements 🚇💨
  10. Ventilation strategy for simultaneous management of indoor particulate matter and airborne transmission risks – A case study for urban schools in South Korea 🏫🌀

Joao Proenca | Sustainability | Excellence in Research

Prof. Dr. Joao Proenca | Sustainability | Excellence in Research

Full Professor, University of Porto, Portugal.

João F. Proença, born in Coimbra, Portugal, on April 21, 1963, is a renowned Full Professor at the University of Porto’s School of Economics and Management. He is also the President of the Scientific Department of Business and Management at the University of Porto. Proença’s career spans academia and business leadership, with past roles including Rector of Universidade Europeia and Chief Academic Officer for Laureate International Universities in Portugal. He has held several leadership positions, such as Dean of the School of Economics and Management at the University of Porto. Proença has published over 150 research papers and has been a Visiting Researcher at prestigious institutions worldwide. In addition to his academic achievements, he has also led business operations as CEO and Chairman in various commercial and industrial firms, contributing to both the academic and business communities. He specializes in Marketing, Business Management, and Services Management.

Profile :

Orcid

Scopus

Google scholar

Education :

João F. Proença’s academic journey began with a Bachelor’s in Business and Management Studies from Universidade Católica Portuguesa, Lisbon (1986). He then earned a Master’s in Marketing and Commercial Management from IE Business School in Madrid, Spain (1991), graduating second in his class. Proença further advanced his studies with a PhD in Business Studies from the University of Porto (1999), receiving unanimous approval for his dissertation. He later achieved the title of “Agregação” in Business Studies from the same institution in 2008, a required qualification for a full professor role in Portugal. His educational achievements have laid the foundation for his successful academic career and extensive research in business and management. Proença is committed to fostering excellence in education and research, mentoring students and scholars globally. His academic background plays a pivotal role in shaping his contributions to higher education, business practices, and management studies.

Experience :

João F. Proença boasts an extensive career in both academia and business leadership. As a Full Professor at the University of Porto’s School of Economics and Management, he has held key academic positions, including Director of multiple degree programs and Chairman of the Scientific Board. He was the Dean of the University of Porto’s School of Economics and Management (2010-2015), where he contributed to the institution’s high standing in international rankings. Proença also served as Rector of Universidade Europeia, overseeing multiple campuses, and as Chief Academic Officer for Laureate International Universities in Portugal. In addition to his academic career, Proença has significant business experience, having held executive roles such as CEO and Chairman at companies within the Probos Group, now part of H.B. Fuller. His leadership in business and education has shaped his approach to management and services studies, demonstrating a unique blend of academia and industry expertise.

Research Focus :

João F. Proença’s research primarily revolves around Marketing, Business Management, and Services Management. His work delves into the dynamics of service quality, consumer behavior, and sustainable business practices, with a focus on examining how companies can improve customer relations and operational efficiency. Proença is also interested in the intersection of sustainability and business, particularly in how businesses can integrate sustainable practices into their operations. His research explores innovative service strategies, value co-creation, and the role of business models in promoting long-term sustainability. Additionally, Proença has a particular focus on the influence of technology and digital transformation in services management. He has published numerous articles on service marketing, consumer behavior, and sustainability, contributing valuable insights to the academic community. Proença’s global collaborations and visiting researcher roles at various universities further enrich his research, creating a broader perspective on contemporary challenges in business and management.

Publications:

  1. Sustainable Campus Operations in Higher Education Institutions: A Systematic Literature Review 🌱🎓
  2. The Influence of Perceived Risk on Mobile Shopping Cart Abandonment 📱🛒
  3. How Farmers Present a Sustainable Product to Socially Responsible Consumers—An Approach to Local Organic Agriculture 🌾🌍
  4. The Influence of Service Quality on the Consulting Relationship 🤝💼
  5. The Influence of Sustainability on Psychological Ownership in Services Based on Temporary Access ♻️💡
  6. Determinants of the Purchase of Secondhand Products: An Approach by the Theory of Planned Behaviour 🔄🛍️
  7. Motivations for Peer-to-Peer Accommodation: Exploring Sustainable Choices in Collaborative Consumption 🏠🤝
  8. Sustainability in the Coffee Supply Chain and Purchasing Policies: A Case Study Research ☕🌍
  9. The Use of Positive and Negative Appeals in Social Advertising: A Content Analysis of Television Ads for Preventing HIV/AIDS 📺⚖️
  10. Tourism Co-Creation in Place Branding: The Role of Local Community 🏞️👥

Sohaib Tahir | Renewable Energy | Excellence in Research

Assist. Prof. Dr Sohaib Tahir | Renewable Energy | Excellence in Research

Dr. Sohaib Tahir is a seasoned Electrical Engineer and researcher with over 11 years of experience in research, teaching, and technical leadership. With a robust academic foundation, Dr. Tahir has earned a PhD from Shanghai Jiao Tong University, China, and a Master’s degree from Xi’an Jiao Tong University, China. He currently serves as an Assistant Professor at Dhofar University, Oman, and has previously held roles as Head of the Department at COMSATS University, Sahiwal Campus, Pakistan. His career spans academia, technical troubleshooting, team management, and research collaboration with prestigious organizations globally. Dr. Tahir’s research interests primarily focus on power electronics, renewable energy systems, and energy policy. He is dedicated to applying his expertise to solve real-world energy challenges and is a committed mentor and researcher in the field.

Profile

Strengths for the Award

  1. Extensive Research Contributions: Dr. Sohaib Tahir has made significant contributions to the fields of power electronics, renewable energy systems, and energy policy, with a clear focus on solving contemporary global energy challenges. His work spans across key topics such as hybrid renewable energy systems, grid integration, and optimization of power systems. His research has been published in highly respected journals such as Electronics, Sustainability, Energy Strategy Reviews, and International Journal of Hydrogen Energy, and has been cited numerous times.
  2. International Experience and Collaboration: Dr. Tahir’s experience with prestigious international institutions (e.g., Shanghai Jiao Tong University and Xi’an Jiao Tong University) and his collaborations with leading researchers globally demonstrate his strong academic network. This exposure has helped him build a solid foundation in research and contribute to impactful projects. Additionally, his bilingual skills (English, Mandarin) enable cross-border collaboration, further elevating his research profile.
  3. Leadership and Mentoring: His tenure as Head of Department at COMSATS University Islamabad (Sahiwal campus) and his role as an Assistant Professor showcase his leadership abilities. He has also supervised several final year projects, particularly those related to cutting-edge technologies in automation, renewable energy, and IoT, demonstrating his ability to nurture the next generation of engineers and researchers.
  4. Recognition and Awards: Dr. Tahir has received multiple Research Productivity Awards from COMSATS University Islamabad, which are an indication of his consistent research output and the impact of his work. His recognition as a keynote speaker at international conferences and seminars further solidifies his standing as an expert in his field.
  5. Teaching and Mentoring Skills: Dr. Tahir has taught a wide variety of courses related to electrical engineering and computer engineering. His ability to impart technical knowledge across topics like power systems, control systems, and digital electronics is commendable. Furthermore, his involvement in various committees and administrative roles reflects his commitment to enhancing the academic environment and improving educational standards.
  6. Technological Innovation: His research in the optimization of green hydrogen production and his investigation into wind power integration for local communities highlight his focus on sustainable energy solutions. His work on maximum power point tracking (MPPT) in solar and wind systems is also at the forefront of energy efficiency and grid reliability.

Areas for Improvement

  1. Broader Public Engagement and Outreach: While Dr. Tahir’s academic and technical accomplishments are substantial, there seems to be limited public-facing engagement or media presence. Greater visibility through media outlets, popular science publications, or public-speaking engagements on renewable energy solutions and sustainability could help position him as a thought leader in the broader energy policy and sustainability community.
  2. Interdisciplinary Research: Although Dr. Tahir’s research is commendable in the electrical engineering and renewable energy domains, there might be an opportunity to expand his focus into more interdisciplinary research. For example, integrating economic modeling or policy analysis into his engineering research could enhance the real-world application and scalability of his findings, especially in developing countries.
  3. Higher Focus on Funding and Collaborative Grants: Securing larger research grants and collaborating on multi-institutional projects could provide Dr. Tahir with more opportunities to expand the scope of his research. Collaboration with industry partners could help to translate his research into more practical solutions and increase its societal impact.
  4. Increased Focus on Early-Career Researchers: While Dr. Tahir has mentored many students, further focusing on establishing structured research mentorship programs for early-career researchers, particularly in renewable energy or energy policy, could amplify his contributions to the academic community and research development.
  5. Diversity of Research Output: Although Dr. Tahir has published extensively, diversifying his research output to include more collaborative papers with researchers from other disciplines, or exploring emerging fields like smart grids, artificial intelligence for energy systems, and energy storage technologies, would enhance his research profile.

Education

Dr. Sohaib Tahir completed his PhD in Electrical Engineering from the School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University (2015-2018), ranked 46th internationally. Prior to that, he earned his Master of Engineering (ME) in Electrical Engineering from Xi’an Jiao Tong University, China (2012-2014), ranked 302nd globally. He also holds a Bachelor of Science (BS) in Electrical Engineering from COMSATS Institute of Information Technology, Lahore, Pakistan (2005-2009), ranked 1105th globally. His academic journey has been marked by excellence, with early graduation honors, scholarships, and a consistent record of achievement. His strong educational background laid the foundation for his deep expertise in renewable energy, power systems, and electronics, which he continues to apply in both teaching and research settings.

Experience

Dr. Sohaib Tahir has accumulated more than a decade of diverse experience across academia, research, and technical roles. He is currently an Assistant Professor at Dhofar University, Oman, where he focuses on electrical and computer engineering. Prior to this, he served as Head of Department at COMSATS University, Sahiwal, Pakistan, overseeing faculty and academic affairs from 2022 to 2023. Dr. Tahir’s academic career also includes roles as an Assistant Professor and Lecturer at COMSATS University, Sahiwal Campus, where he contributed to curriculum development and research initiatives. His earlier experience includes research assistant positions at Shanghai Jiao Tong University and Xi’an Jiao Tong University, where he worked on projects related to power electronics and renewable energy. Dr. Tahir’s technical experience also spans industry roles, such as Field Engineer, Regional Coordinator, and Project Manager in Pakistan, demonstrating his versatile skill set.

Awards and Honors

Dr. Sohaib Tahir has received multiple prestigious awards throughout his career, highlighting his excellence in research and academic contributions. He was honored with the Research Productivity Award for four consecutive years (2018-2021) at COMSATS University Islamabad, recognizing his substantial contributions to the field of electrical engineering and renewable energy. He was also named Best Motivational Speaker for his inspiring talk on “Teaching is an Art” at Mehran University of Engineering & Technology. Dr. Tahir has been a Keynote Speaker at several international conferences, including the Frontiers in Information Technology (FIT) Conference and workshops on research writing and renewable energy. He has received fully funded scholarships for his studies in China, including at Shanghai Jiao Tong University and Xi’an Jiao Tong University, where he was also recognized with the Early Graduation Student Award. These accolades reflect his dedication to advancing knowledge in his field.

Research Focus

Dr. Sohaib Tahir’s research focuses on power electronics, renewable energy systems, and energy policy. His work explores advanced control techniques in power electronics, particularly for renewable energy applications like solar and wind power integration. His research aims to improve energy efficiency and sustainability through hybrid systems, such as the integration of photovoltaic (PV) and wind energy technologies. Dr. Tahir is particularly interested in the optimization of renewable energy systems, including the development of algorithms for maximum power point tracking (MPPT) and control systems for voltage-source inverters (VSI). He also investigates the potential of green hydrogen production in hydroelectric-PV grid-connected power stations and the role of smart grids in energy distribution. His work has significant implications for energy policy, particularly in the context of rural electrification and sustainable development. By applying his expertise to both practical and theoretical aspects of energy systems, Dr. Tahir seeks to address critical energy challenges.

Publications Top Notes

  1. Digital control techniques based on voltage source inverters in renewable energy applications: A review 🌱
  2. Hybrid energy sources status of Pakistan: An optimal technical proposal to solve the power crises issues 🌍
  3. A research on electricity generation from wind corridors of Pakistan (two provinces): A technical proposal for remote zones 💨
  4. Optimization of green hydrogen production in hydroelectric-photovoltaic grid connected power station 🔋
  5. Design and analysis of robust fuzzy logic maximum power point tracking based isolated photovoltaic energy system ☀️
  6. A review of 4D printing–technologies, shape shifting, smart polymer based materials, and biomedical applications 🖨️
  7. Wind power integration: An experimental investigation for powering local communities 🌾
  8. Integration of renewable energy project: a technical proposal for rural electrification to local communities ⚡
  9. Sustainable development and multi-aspect analysis of a novel polygeneration system using biogas upgrading and LNG regasification processes 🔄
  10. Wind Energy Potential at Badin and Pasni Costal Line of Pakistan 🌊

Conclusion

Dr. Sohaib Tahir is an exceptionally well-qualified candidate for the Best Researcher Award due to his outstanding contributions to power electronics, renewable energy systems, and sustainability. His work is innovative, highly impactful, and globally recognized. While he has demonstrated excellent leadership, research output, and academic commitment, opportunities exist for him to increase his public visibility, expand his interdisciplinary collaborations, and continue pushing the boundaries of energy innovation. With minor enhancements in these areas, Dr. Tahir could further cement his reputation as a pioneering researcher in his field.

Khaled Osman | Pesticides | Best Researcher Award

 Prof Dr. Khaled Osman | Pesticides | Best Researcher Award

Professor at  Alexandria University/Faculty of Agriculture, Egypt

Khaled Osman is a prominent researcher and educator in pesticide chemistry and toxicology at Alexandria University, Egypt. Born on July 20, 1961, in Alexandria Governorate, he has dedicated over three decades to advancing the field through teaching and research. With a B.Sc., M.Sc., and Ph.D. in Pesticides Chemistry from Alexandria University, Khaled has authored numerous publications and participated in various national and international workshops. His research focuses on the toxicity of pesticides, bioremediation, and environmental safety. An active member of several professional organizations, he has earned recognition for his significant contributions to agricultural and environmental sciences, receiving national awards for his work. Khaled continues to inspire students and researchers alike, emphasizing the importance of sustainable practices in agriculture.

Profile:

Education: 

Khaled Osman holds a comprehensive academic background in pesticide chemistry from Alexandria University. He earned his Bachelor of Science (B.Sc.) in Pesticides Chemistry in 1983, which laid the foundation for his career in agricultural sciences. Following this, he pursued a Master of Science (M.Sc.) in 1987, focusing on “Toxicokinetics of Insecticides,” exploring the effects of methyl and ethyl substitution on the delayed neurotoxicity of specific compounds. In 1991, he completed his Doctor of Philosophy (Ph.D.) in Pesticides Chemistry, with a thesis titled “Comparative Neurological Lesions of Organophosphorus Compounds Induced and Non-induced Delayed Neuropathy.” His educational journey has equipped him with extensive knowledge and expertise, which he has applied in both teaching and research throughout his career, making him a leading figure in the field.

Experience: 

Khaled Osman boasts extensive experience in academia and research, particularly in pesticide chemistry and environmental science. He has been a faculty member at Alexandria University for over 30 years, teaching courses in organic, physical, and analytical chemistry, as well as specialized subjects like pesticide chemistry and toxicology. His research activities include assessing the toxicity of metals and pesticides to mammals, studying neurotoxicity in workers exposed to pesticides, and developing bioremediation strategies to mitigate environmental impacts. Khaled has participated in WHO workshops focused on analytical procedures for pesticide exposure assessment. His work has resulted in numerous publications in reputable journals, further solidifying his status as an expert in his field. Additionally, he has served on editorial boards for various scientific journals, contributing to the dissemination of knowledge in pesticide chemistry and environmental safety.

Awards and Honors:

Khaled Osman has received multiple prestigious awards recognizing his contributions to agricultural and environmental sciences. In 1996, he was honored with the National Award for Agricultural Sciences and Arts, a testament to his impactful research in pesticide chemistry. Four years later, in 2000, he received the National Award for Environmental Sciences, further highlighting his commitment to addressing environmental issues through scientific inquiry. These accolades not only reflect his dedication to advancing knowledge in pesticide chemistry and toxicology but also underscore the importance of sustainable practices in agriculture. Khaled’s recognition extends beyond national borders, as he is an active member of various professional societies and editorial boards, enhancing his influence in the field. His accolades serve as inspiration for students and colleagues alike, promoting the significance of research that prioritizes public health and environmental protection.

Research Focus:

Khaled Osman’s research focuses on pesticide chemistry, toxicology, and environmental safety, addressing critical issues related to agricultural practices and their impacts on human health and ecosystems. His work encompasses the study of enzyme inhibitory actions, neurotoxicity assessments in workers exposed to pesticides, and the evaluation of the toxicity of metals and pesticides in mammals. Khaled is particularly interested in bioremediation techniques, exploring the use of microorganisms and animal manures to degrade pesticides in contaminated soils. He also conducts studies on monitoring pesticide residues, mycotoxins, and heavy metals in food and soil, emphasizing the need for effective risk assessments. Additionally, his research includes the evaluation of integrated pest management strategies and the role of antioxidants in ameliorating pesticide toxicity. By bridging the gap between science and practical applications, Khaled aims to contribute to safer agricultural practices and improved public health outcomes.

Publication Titles:

  • Monitoring of pesticide residues in vegetables marketed in Al-Qassim region, Saudi Arabia 📊
  • Estimated daily intake of pesticide residues exposure by vegetables grown in greenhouses in Al-Qassim region, Saudi Arabia 🥦
  • Risk assessment of pesticide to human and the environment ⚖️
  • Mineral contents and physicochemical properties of natural honey produced in Al-Qassim region, Saudi Arabia 🍯
  • Toxicity and biochemical impact of certain oxime carbamate pesticides against terrestrial snail, Theba pisana (Müller) 🐌
  • Oxidative stress induced by different pesticides in the land snails, Helix aspersa 🐚
  • Pesticides and human health 🏥
  • Seasonal variations and prevalence of some external parasites affecting freshwater fishes reared at upper Egypt 🐟
  • Safety methods for chlorpyrifos removal from date fruits and its relation with sugars, phenolics and antioxidant capacity of fruits 🍏
  • Biodegradation kinetics of dicofol by selected microorganisms 🌱
  • Bioremediation of oxamyl in sandy soil using animal manures 🐄
  • Phenyl valerate esterases other than neuropathy target esterase and the promotion of organophosphate polyneuropathy 🧬
  • Spatial distribution of pesticide residues in the groundwater of a condensed agricultural area 💧
  • Sulfonyl fluorides and the promotion of diisopropyl fluorophosphate neuropathy ⚗️
  • Remediation of lead and cadmium-contaminated soils 🥇
  • Role of biomarkers in the evaluation of cadmium and ethoprophos combination in male mice 🐁
  • Lindane, chlorpyrifos and paraquat induced oxidative stress in female rats. 🐀
  • Physicochemical and antimicrobial properties of natural honeys produced in Al-Qassim region, Saudi Arabia 🌼
  • Biomonitoring of pesticide contamination from the pesticide industry 🏭
  • Ozone as a safety post-harvest treatment for chlorpyrifos removal from vegetables and its effects on vegetable quality 🍽️

Conclusion:

Khaled Osman is a highly qualified candidate for the Research for Best Researcher Award. His extensive background in pesticide chemistry, teaching excellence, and national recognition highlight his significant contributions to the field. By addressing areas for improvement, particularly in interdisciplinary collaboration and public engagement, he can further enhance the impact of his research. His commitment to advancing knowledge in agricultural and environmental sciences positions him as a leader in his field, making him an exemplary nominee for this prestigious award.

Jasmin Cooper | Environmental Sustainability | Best Researcher Award

Dr Jasmin Cooper | Environmental Sustainability | Best Researcher Award

Dr Jasmin Cooper, Imperial College London, United Kingdom

Dr. Jasmin Cooper, PhD, AMIChemE, is a leading Research Associate at Imperial College London, specializing in emissions inventory analysis and the life cycle sustainability of energy systems. She earned her PhD in Environment and Sustainable Technology from The University of Manchester, where her research assessed the sustainability of shale gas in the UK. Dr. Cooper’s work primarily focuses on evaluating the environmental, economic, and social sustainability of energy systems, including natural gas, hydrogen, and biomethane. She has consulted on multiple projects, offering expertise in emissions quantification, methane leakage analysis, and the techno-economic assessment of low-carbon technologies. With numerous peer-reviewed publications and involvement in high-profile consultancy projects, Dr. Cooper is a prominent figure in the field of sustainable energy systems.

Publication Profile

Google Scholar

Strengths for the Award

Dr. Jasmin Cooper stands out as an ideal candidate for the Best Researcher Award due to her extensive contributions to the fields of emissions inventory analysis, life cycle sustainability of energy systems, and decarbonization. Her research on methane emissions, sustainability assessments of shale gas, and the environmental impact of various energy technologies has not only resulted in high-impact publications but has also provided valuable insights into sustainable energy pathways for the UK. Dr. Cooper’s ability to secure funding, her role as a consultant on multiple high-profile projects, and her interdisciplinary approach make her a strong contender.

Her work, cited by numerous researchers, emphasizes the breadth of her impact. Key projects, such as life cycle assessments for UK industrial decarbonization, further showcase her leadership in advancing sustainable energy solutions. The breadth of her research covers critical areas like hydrogen emissions, negative emission technologies, and methane detection, proving her expertise in reducing environmental impacts.

Areas for Improvement

While Dr. Cooper’s contributions are exceptional, a potential area for growth could be increasing engagement in cross-disciplinary collaborative projects. By expanding the application of her findings in international contexts or other energy sectors, her research’s influence could reach a broader audience. Additionally, greater involvement in public dissemination could enhance the societal understanding and implementation of her findings on sustainability and decarbonization.

Education

Dr. Jasmin Cooper received her PhD in Environment and Sustainable Technology from The University of Manchester (2013–2017), where her research focused on the life cycle sustainability assessment of shale gas in the UK. Her work, funded by the EPSRC and The University of Manchester, examined the environmental, economic, and social implications of shale gas extraction and electricity generation in the UK, comparing its sustainability with other electricity options. Her thesis, titled Life Cycle Sustainability Assessment of Shale Gas in the UK, was supervised by Professor Adisa Azapagic and Dr. Laurence Stamford. Prior to her PhD, Dr. Cooper completed a First Class (Honours) MEng in Chemical Engineering with Environmental Technology (2009–2013) at The University of Manchester. Her undergraduate dissertation explored the swelling behavior of porous polymer adsorbents used for CO₂ capture, further solidifying her expertise in environmental technology and sustainable energy solutions.

Experience

Dr. Jasmin Cooper is currently a Research Associate at the Department of Chemical Engineering, Imperial College London, where she has worked since 2018. Her research focuses on decarbonizing energy systems by analyzing emissions from natural gas, biomethane, hydrogen, and negative emission technologies. Dr. Cooper conducts emission data analysis and life cycle modelling, and she leads projects on the quantification of methane emissions from natural gas supply chains. Her expertise extends to supply chain sustainability, where she assesses the transfer of greenhouse gas emissions across value chains and validates Scope 3 emissions quantification. Dr. Cooper has also worked as a consultant on various high-profile projects, such as methane leakage analysis for Shell and technoeconomic assessments of low-carbon marine fuels for the Royal Academy of Engineering. She has served as an expert witness and third-party reviewer for several consultancy projects and reports, demonstrating her broad expertise in environmental sustainability.

Research Focus

Dr. Jasmin Cooper’s research focuses on the life cycle sustainability of energy systems, with a particular emphasis on emissions analysis and environmental impact assessment. Her work covers natural gas, biomethane, hydrogen, and negative emission technologies, investigating how these energy sources can be used to decarbonize global energy systems. She specializes in the quantification of methane and other short-lived climate pollutants, as well as the technologies used to detect and measure these emissions. Dr. Cooper also explores the sustainability of energy supply chains, assessing how greenhouse gas emissions transfer across value chains and validating Scope 3 emissions data. In addition to this, her research includes the environmental, economic, and social sustainability assessment of shale gas, providing critical insights into its role in energy markets. Overall, her research contributes to understanding how future energy systems can meet global climate goals while minimizing environmental impacts.

Publications Top Notes

  • Shale gas: A review of the economic, environmental, and social sustainability 🛢️🌍💼 – J Cooper, L Stamford, A Azapagic (Energy Technology, 2016)
  • Hydrogen emissions from the hydrogen value chain-emissions profile and impact to global warming 💨⚗️🌍 – J Cooper, L Dubey, S Bakkaloglu, A Hawkes (Science of The Total Environment, 2022)
  • Economic viability of UK shale gas and potential impacts on the energy market up to 2030 💰💡🇬🇧 – J Cooper, L Stamford, A Azapagic (Applied Energy, 2018)
  • Methane emissions along biomethane and biogas supply chains are underestimated ♻️💨🌾 – S Bakkaloglu, J Cooper, A Hawkes (One Earth, 2022)
  • Environmental impacts of shale gas in the UK: Current situation and future scenarios 🛢️🇬🇧🔍 – J Cooper, L Stamford, A Azapagic (Energy Technology, 2014)
  • Natural gas fuel and greenhouse gas emissions in trucks and ships 🚛⛴️🌍 – J Speirs, P Balcombe, J Cooper (Progress in Energy, 2020)
  • The quantification of methane emissions and assessment of emissions data for natural gas supply chains 📊🌿🛢️ – J Cooper, P Balcombe, A Hawkes (Journal of Cleaner Production, 2021)
  • Social sustainability assessment of shale gas in the UK 💼👨‍👩‍👦🇬🇧 – J Cooper, L Stamford, A Azapagic (Sustainable Production and Consumption, 2018)

Conclusion

Dr. Jasmin Cooper’s research achievements, particularly in the sustainable energy sector, underscore her suitability for the Best Researcher Award. Her work addresses critical global challenges in reducing emissions and advancing renewable energy, demonstrating both academic rigor and practical impact. This combination of scholarly influence and societal relevance makes her an exemplary candidate for this prestigious award.

Agnieszka Pieniążek | Sustainability Award | Best Researcher Award

Dr Agnieszka Pieniążek | Sustainability Award | Best Researcher Award

Dr Agnieszka Pieniążek, Institute of Physics PAS , Poland

Agnieszka Pieniążek 🌟 is an Assistant Professor at the Institute of Physics PAS, Warsaw, Poland. She completed her doctoral studies in Physical Sciences and holds master’s degrees in Analytical Chemistry and Applied Physics from leading Polish universities. Agnieszka’s research focuses on wide bandgap semiconductors, perovskites, and nanostructures, exploring their optical and electronic properties. She has authored 22 SCI and Scopus indexed articles and holds a patent for quantum nanostructures. Recognized for her Outstanding Doctoral Dissertation by the Polish Society for Crystal Growth, she continues to contribute significantly to the field of materials science and semiconductor physics.

 

Publication Profile

Scopus

Education

Agnieszka Pieniążek pursued her academic journey with dedication and achievement. She completed her Doctoral Studies in Physical Sciences at the Institute of Physics PAS, Warsaw, Poland, spanning from October 2013 to June 2019. Prior to that, she earned a Master’s Degree in Analytical Chemistry from Maria Curie-Skłodowska University, Faculty of Chemistry, Lublin, Poland, during October 2008 to July 2013. Her educational foundation also includes a Master’s Degree in Applied Physics from the same university’s Faculty of Mathematics, Physics, and Computer Science, obtained between October 2007 and July 2012. 🎓

Awards

In June 2022, Agnieszka Pieniążek was honored with the Award from the Polish Society for Crystal Growth for her Outstanding Doctoral Dissertation titled “Local Optical Properties of ZnO Microrods Grown by Hydrothermal Method.” This prestigious accolade recognizes her exceptional research contributions in the field of crystal growth and semiconductor optics. Agnieszka’s dissertation delved into the intricate optical characteristics of ZnO microrods, cultivated through innovative hydrothermal techniques. Her work not only expands the understanding of semiconductor materials but also underscores her commitment to advancing scientific knowledge and applications in materials science. 🏆

Research Focus

Agnieszka Pieniążek 🌟 specializes in the research of wide bandgap semiconductors, perovskites, and nanostructures. Her work primarily revolves around investigating the optical and electronic properties of these materials, with a focus on understanding defects, structural dynamics, and their implications for optoelectronic applications. Through her studies, she explores topics such as the bandgap pressure coefficient in perovskite thin films, interdiffusion phenomena in semiconductor alloys, and the cathodoluminescence patterns of semiconductor microrods. Agnieszka’s contributions significantly advance the field of materials science, particularly in enhancing the efficiency and reliability of semiconductor devices for renewable energy and optoelectronics.