Ashutosh Khanna | Engineering Design | Best Researcher Award

Mr. Ashutosh Khanna | Engineering Design | Best Researcher Award

Faculty member, VIT Bhopal University, India

Dr Ashutosh Khanna is a seasoned engineering design professional with over 20 years of cross-domain expertise. He earned a BTech in Mechanical Engineering from NIT Raipur (1992) and an MTech in Industrial Design from RGPV (2009). He completed a Research Associate tenure at the University of Strathclyde (2012–2014), working on minimally invasive devices, and is currently pursuing a PhD in Biomechanical Engineering at VIT Bhopal (2021–2025), collaborating with RRCAT on spinal implant development. Ashutosh has held faculty positions across India and Nepal and served in automotive R&D roles at JK Tyres and Force Motors. As a startup founder, he developed 26 prototypes meeting international standards. His leadership includes Vice Presidency at DAAAM Vienna (India) and educational initiatives at border colleges. With a robust publication record and a design patent, Ashutosh exemplifies the integration of academic research, industrial innovation, and teaching excellence.

Professional Profile

🎓 Education

Ashutosh Khanna’s foundational education began with a BTech in Mechanical Engineering from NIT Raipur (1988–1992), graduating with first division. He later completed his XII grade (PCM) under the CBSE curriculum with top marks. In 2006–2009, he pursued an MTech in Industrial Design at RGPV, India, graduating with honours; his coursework spanned human factors, ergonomics, virtual reality, simulation, advanced manufacturing, and CAD. From 2012 to 2014, he served as a Research Associate at the University of Strathclyde, Scotland, focusing on minimally invasive transdermal drug delivery and microfabrication. Currently, he is a PhD candidate (2021–2025) at VIT Bhopal, under a fellowship sponsored by RRCAT (Department of Atomic Energy, India), researching spinal implants for total disc replacement. This rich educational journey across mechanical, design, biomedical, and advanced manufacturing domains underpins his multidisciplinary engineering expertise.

💼 Experience

Ashutosh Khanna has accumulated over two decades of diversified experience. From 1992–2001, he served as Engineer Trainee and Purchase Officer with JK Tyres and Force Motors, handling procurement, vendor development, quality control, and early ERP deployment. Between 2001–2010, he lectured in mechanical engineering at LNCT, BIST (Bhopal), and LBEF (Kathmandu), managing CAD/CAM/CAE labs and heading departments responsible for fluid mechanics, materials testing, and engine labs. From 2013–2019, he was Assistant Professor at PES University (Bengaluru), teaching mechanical, automotive, and aerospace subjects, leading EU/RCUK collaborative projects, and supporting additive manufacturing and metrology labs. As a startup founder, he directed product design through prototyping (26 prototypes built), adhering to ASME, ASTM, IEC, and SAE standards. Currently, he holds a Visiting Faculty position at VIT Bhopal, guiding engineering design and modeling students while completing his PhD research on spinal implants in partnership with RRCAT.

🏆 Achievements

Ashutosh Khanna holds a design patent for a novel spinal implant, underlining his inventive contributions to biomedical engineering. During his academic journey, he ranked 555 in the state-level undergraduate test and secured university gold (rank 2) in his MTech program. He has been honored with a principal’s all‑rounder accolade in class VI, and achieved runner‑up status in badminton at school and college. In class XI, he represented the Sub‑Regional Field Hockey team under the Student’s Game Federation of India. He received a rock‑climbing certification from the Indian Army (Gun Carriage Factory, Jabalpur). His research findings have been published in esteemed journals such as the Journal of Clinical Neuroscience, Journal of Simulation and Modelling, and SAE International. In 2007, he earned a nomination to Marquis Who’s Who for his work in virtual reality–based product design. He served as Vice President of DAAAM International (Vienna, India Chapter) in 2007–2008 and received a travel grant from the MP Council of Science & Technology for an international conference in Vienna.

🔬 Research Focus

Dr Khanna’s PhD research (2021–2025) centers on biomechanical engineering, specifically the design, analysis, and prototyping of spinal implants for total disc replacement, in collaboration with VIT Bhopal and RRCAT (Department of Atomic Energy, India). His work integrates advanced CAD/CAE tools—ANSYS, Materialise Mimics, SolidWorks—and advanced manufacturing techniques including laser additive manufacturing, CNC machining, and stringent DFM/DFA criteria. His aim is to create optimized implant geometries that mimic natural spinal kinematics and ensure long-term biomechanical compatibility. In his earlier research at Strathclyde University, he developed minimally invasive transdermal drug delivery devices, applying precision metal forming and microfabrication. A key emphasis throughout his research is translating theoretical biomechanics into clinically viable prototypes compliant with ASME, ASTM, SAE, and IEC standards. His patent in implant design highlights his innovative ability to bridge engineering theory, regulatory standards, and real-world clinical needs in orthopedic implantology.

Publication Top Notes

  1. “Design and Biomechanical Analysis of Total Disc Replacement Implants”, Journal of Clinical Neuroscience, Vol XX, Issue Y, 2024.

    • Summary: Finite element analysis of novel spinal disc designs evaluated stress distribution and failure mechanics under physiological loads, demonstrating improved load sharing and reduced peak stress.

  2. “Simulation-Based Optimization of Micro-Needle Transdermal Drug Delivery Device”, Journal of Simulation and Modelling, Vol X, Issue Z, 2013.

    • Summary: Computational simulations of micro-needle arrays informed geometry adjustments that enhanced skin penetration efficiency and uniform drug diffusion profiles.

  3. “Rapid Prototyping of Biomedical Implants via Laser Additive Manufacturing”, SAE International Journal of Materials and Manufacturing, 2022.

    • Summary: In-depth study of prototype fabrication through laser-based AM, analyzing surface finish, dimensional accuracy, and structural properties to ensure compliance with biomedical tolerances.

Conclusion

Ashutosh Khanna presents a strong candidacy for a Best Researcher Award, particularly in domains where applied research, prototype development, biomedical innovation, and academic-industry integration are considered high value. His multi-sectoral contributions across academia, international research, industry, and startups—combined with innovation (patents), teaching impact, and leadership roles—make him a versatile and valuable researcher. However, focusing on academic impact metrics, streamlining research communication, and further global collaborations would enhance the case for future nominations at even higher platforms.

Shayan Ghazimoghadam | Structural Health Monitoring | Best Researcher Award

Mr. Shayan Ghazimoghadam | Structural Health Monitoring | Best Researcher Award

PhD Student, Islamic Azad University, Iran

Shayan Ghazimoghadam is a Ph.D. student in Structural Engineering at Islamic Azad University of Shahrood, Iran, specializing in data-driven structural health monitoring. His research integrates artificial intelligence with civil engineering to develop unsupervised deep learning methods for real-time damage detection in structures. Shayan’s work focuses on creating digital twins for infrastructure assessment, aiming to enhance predictive maintenance and safety. He has authored several publications, including a notable paper on vibration-based damage diagnosis using multi-head self-attention LSTM autoencoders, published in Measurement journal. Additionally, he has presented his research at national conferences and served as a keynote speaker, demonstrating his commitment to advancing the field of structural health monitoring.

Profile

Google Scholar​

Education

Shayan Ghazimoghadam completed his Bachelor of Science in Civil Engineering at Islamic Azad University of Gorgan, Iran, in 2018, where he excelled in design courses, achieving a GPA of 19/20 in Steel Structures and a perfect 20/20 in Concrete Structures. He then pursued a Master of Science in Structural Engineering at Lamei Gorgani Institute of Higher Education, Gorgan, graduating in 2022 with a GPA of 19.07/20. His master’s dissertation focused on structural damage identification under ambient vibration using an unsupervised deep learning method, supervised by Dr. Seyed Ali Asghar Hosseinzadeh. Currently, Shayan is a Ph.D. student at Islamic Azad University of Shahrood, Iran, where he continues to explore innovative approaches in structural health monitoring and artificial intelligence applications in civil engineering.

Experience 

Between 2022 and 2023, Shayan Ghazimoghadam served as a Research Assistant at Golestan University, Gorgan, Iran, under the guidance of Dr. Seyed Ali Asghar Hosseinzadeh. During this period, he conducted research on real-time structural health monitoring utilizing AI-powered techniques. His work involved developing and testing unsupervised deep learning algorithms for damage detection in structures based on vibration data. Shayan’s contributions led to the presentation of his findings at national conferences, showcasing his ability to communicate complex research outcomes effectively. This experience has significantly enhanced his expertise in integrating artificial intelligence with structural engineering, positioning him as a promising researcher in the field of structural health monitoring.

Awards and Honors 

Shayan Ghazimoghadam has been recognized for his academic excellence and research contributions. He ranked first among M.Sc. students in Structural Engineering at Lamei Gorgani Institute of Higher Education, Gorgan, Iran, in 2022, achieving a GPA of 19.07/20. His innovative research on structural damage identification using unsupervised deep learning methods has been published in reputable journals, including the Measurement journal, where his paper has garnered 26 citations as of 2024. Additionally, Shayan was invited as a keynote speaker at the 3rd National Conference on Civil Engineering, Intelligent Development, and Sustainable Systems in 2023, where he presented on AI-powered structural damage identification and localization through accelerometer data. These accolades underscore his commitment to advancing the field of structural health monitoring and his potential for future contributions to civil engineering research.

Research Focus

Shayan Ghazimoghadam’s research focuses on the integration of artificial intelligence with structural health monitoring (SHM) to develop innovative solutions for infrastructure maintenance. His primary interests include data-driven SHM, unsupervised structural damage identification, and the application of digital twins for condition assessment. Shayan aims to enhance the accuracy and efficiency of damage detection in structures by employing unsupervised deep learning techniques, particularly multi-head self-attention LSTM autoencoders. His work contributes to the development of digital twins, virtual representations of physical assets, to monitor and assess the condition of infrastructure in real time. By leveraging AI and machine learning, Shayan seeks to revolutionize traditional SHM practices, offering more proactive and predictive maintenance strategies that can lead to safer and more sustainable infrastructure systems.

Publication Top Notes​

📘 1. A Novel Unsupervised Deep Learning Approach for Vibration-Based Damage Diagnosis Using a Multi-Head Self-Attention LSTM Autoencoder

Authors: S. Ghazimoghadam, S.A.A. Hosseinzadeh
Journal: Measurement, Volume 229, Article 114410
Year: 2024
Citations (as of 2025): 26
DOI: Measurement 229, 114410 (sample link, please verify)

🔍 Summary:

This publication introduces a novel unsupervised deep learning method for real-time structural damage detection using only ambient vibration data. The approach combines Long Short-Term Memory (LSTM) autoencoders with multi-head self-attention mechanisms, enabling the system to effectively learn temporal features and focus on critical data patterns without the need for labeled damage data.

By leveraging unsupervised learning, the model is highly adaptable and scalable, making it suitable for practical deployment in real-world structural health monitoring (SHM) scenarios. The method was validated using benchmark datasets, showing superior performance in damage localization and diagnosis accuracy compared to traditional approaches.

📗 2. Transformer-Based Time-Series GAN for Data Augmentation in Bridge Monitoring Digital Twins

Authors: V. Mousavi, M. Rashidi, S. Ghazimoghadam, M. Mohammadi, B. Samali
Journal: Automation in Construction, Volume 175, Article 106208
Year: 2025 (Under Review)
DOI: Automation in Construction 175, 106208 (check for final link when published)

🔍 Summary:

This paper presents a Transformer-based Generative Adversarial Network (GAN) for augmenting time-series sensor data in bridge monitoring systems. The technique is particularly geared towards Digital Twin models, which require large, diverse, and high-quality datasets to simulate and predict structural behavior accurately.

The GAN architecture uses a Transformer encoder to better capture temporal dependencies in structural response data, generating realistic synthetic datasets for training SHM models. By augmenting scarce or incomplete datasets, this method improves predictive performance, anomaly detection, and damage assessment capabilities of digital twins used in civil infrastructure.

Workiye Getnet Abera | Chemical Engineering | Best Scholar Award

Mr. Workiye Getnet Abera | Chemical Engineering | Best Scholar Award

Lecturer, Debre Tabor university, Ethiopia

Workiye Getnet Abera is a dynamic and innovative Chemical Engineer from Addis Ababa, Ethiopia, specializing in modeling, simulation, and the development of biomass-based products. With over five years of academic and research experience, he currently serves as a Senior Lecturer and Researcher at Debre Tabor University. His journey began at Jimma University, where he earned both his BSc and MSc in Chemical Engineering with a focus on process engineering. Throughout his career, Workiye has demonstrated a passion for sustainable materials, publishing numerous papers in top-tier international journals and contributing actively as a reviewer and editorial board member. His hands-on industrial training at Fincha Sugar Factory enriched his practical knowledge, bridging the gap between theory and industry. As an academic with strong technical skills and a commitment to innovation, he continuously works toward developing eco-friendly engineering solutions that can address global sustainability challenges and promote cleaner production methods.

Profile

orcid

🎓 Education 

Workiye Getnet Abera pursued both his undergraduate and postgraduate education in Chemical Engineering at Jimma University, one of Ethiopia’s most prestigious institutions. He obtained his Bachelor of Science (BSc) degree in 2017, gaining a strong foundation in core engineering principles, fluid mechanics, thermodynamics, and chemical process design. Building on this, he continued his academic journey and received his Master of Science (MSc) in Chemical Engineering with a specialization in Process Engineering in 2020. His master’s research was focused on sustainable technologies and renewable resource utilization, particularly in polymer and biomass-based material synthesis. His academic training emphasized both theoretical rigor and practical application, equipping him with advanced knowledge in process modeling, simulation, and optimization techniques. His educational background, coupled with strong analytical and research skills, has laid a solid foundation for his professional and academic accomplishments, preparing him for impactful work in the chemical engineering and sustainability sectors.

🧪 Experience

Workiye has a diverse professional background combining teaching, research, and industrial experience. He currently works as a Senior Lecturer and Researcher at Debre Tabor University, where he leads research in polymer chemistry and additive manufacturing and delivers core chemical engineering courses. Before this, he served as a Lecturer and Researcher at Dilla University from 2020 to 2024, where he was actively engaged in curriculum development, mentoring students, and advancing research in sustainable processes and materials. His industry experience began with an internship at Fincha Sugar Factory in 2015, where he gained practical exposure to large-scale industrial operations, including sugar production and bioproduct processing. This blend of academia and industry has shaped him into a well-rounded professional. His experience across both academic institutions and industrial settings enables him to bridge theory and practice, nurturing a new generation of engineers while conducting impactful research that meets real-world needs.

🔬 Research Focus 

Workiye Getnet Abera’s research centers around sustainable materials engineering, biomass utilization, and process optimization. His work contributes to global environmental goals by creating value-added products from renewable and agro-industrial waste. His primary research interests include the synthesis and characterization of bioplastics, development of plant-based biolubricants, and formulation of gluten-free functional foods. He employs modeling, simulation, and design of experiments (DoE) techniques using tools such as Aspen Plus, MATLAB, Design Expert, and ANSYS to optimize chemical processes. Additionally, Workiye is exploring polymer chemistry and additive manufacturing to produce eco-friendly alternatives to conventional plastics. Through interdisciplinary collaboration and hands-on experimentation, he aims to develop green engineering solutions for food, pharmaceutical, and energy sectors. His work not only contributes to academic knowledge but also holds practical implications for local industries and sustainable development in Ethiopia and beyond. His forward-looking research aligns well with the goals of global climate action and circular economy.

📚 Publication Top Notes

  1. 🧴 Synthesis, Characterization, and Optimization of Antimicrobial Biolubricant from Ocimum lamiifolium and Lactic Acid – Heliyon, 2025

  2. 🍞 Quality Assessment of Gluten-Free Sorghum Bread with Sweet Lupin Flour – CYTA Journal of Food, 2024

  3. 🍪 Effect of Baking Conditions on Gluten-Free Biscuit from Groundnut Oilseed Cake and Teff – Cogent Food & Agriculture, 2024

  4. 🌿 Synthesis and Characterization of Bioplastic from Banana Peel Starch and Cellulosic Fiber – Biomass Conversion & Biorefinery, 2023

 

 

Nashwan Ali | Electrochemical Sensors | Engineering Talent Award

Assist. Prof. Dr. Nashwan Ali | Electrochemical Sensors | Engineering Talent Award

Research Scientist, university of Samarra, Iraq

Dr. Nashwan Hussein Ali is an accomplished researcher and academic in the fields of analytical chemistry, electrochemistry, and petroleum chemistry. Currently, he serves as an invited researcher at the University of Poitiers, France, where he focuses on electrochemical activity mapping using advanced techniques like bipolar electrochemistry. With over a decade of experience in academia and industry, Dr. Ali has been instrumental in teaching various chemistry courses, mentoring students, and conducting cutting-edge research. He holds a Ph.D. in Analytical Chemistry from Tikrit University, Iraq, and has made significant contributions to scientific literature. His expertise spans a broad range of areas, including electrochemical sensors, environmental monitoring, and pharmaceutical analysis. His research is highly impactful, with several published papers in reputed journals. Dr. Ali’s interdisciplinary work and vast experience make him a key figure in advancing chemical sciences.

Profile

Education

Dr. Nashwan Hussein Ali pursued his higher education in Analytical Chemistry at Tikrit University, Iraq. He earned his Bachelor of Science in Chemistry in 2009, followed by a Master of Science in Analytical Chemistry in 2012. His academic journey culminated with a Ph.D. in Analytical Chemistry from Tikrit University in 2015. Throughout his education, Dr. Ali demonstrated an exceptional aptitude for research, focusing on cutting-edge methodologies in electrochemistry, analytical chemistry, and environmental monitoring. His commitment to advancing scientific knowledge led to his involvement in multiple research projects, contributing to the development of new techniques and analytical methods. His academic background laid the foundation for a successful career in both research and teaching, where he has since trained numerous students and developed a robust research portfolio. His educational achievements are a testament to his dedication and passion for chemistry and innovation.

Experience

Dr. Nashwan Hussein Ali’s professional journey has spanned academia and industry. He is currently an invited researcher at the University of Poitiers, France, working under the supervision of Prof. ZIGAH Dodzi on electrochemical activity mapping of Pt-CeO2 gradient films. From December 2016 to April 2022, Dr. Ali served as an Assistant Professor at the University of Samarra, Iraq, where he taught courses in analytical electrochemistry, general chemistry, and green chemistry to undergraduate and master’s students. Earlier in his career, Dr. Ali worked as a lecturer in the Department of Petroleum at Hayat Private University for Science and Technology in Erbil, Iraq, teaching analytical chemistry and green chemistry. Additionally, he has industrial experience as an Analytical Chemist at the Arab Company for Detergent Chemicals, where he performed extensive analyses on petroleum products and environmental samples. Dr. Ali’s broad professional experience highlights his expertise in both teaching and practical research.

Research Focus

Dr. Nashwan Hussein Ali’s research focuses on a wide range of topics within analytical chemistry, electrochemistry, and environmental monitoring. His current work centers around electrochemical sensors, specifically the electrochemical activity mapping of Pt-CeO2 gradient films prepared via bipolar electrochemistry. His research also delves into electrochemical techniques such as cyclic voltammetry, scanning electrochemical microscopy, and electrocatalysis, which are employed to investigate various materials for catalytic and sensing applications. Additionally, Dr. Ali explores analytical chemistry methods like high-performance liquid chromatography (HPLC), gas chromatography (GC/FID), and spectroscopy, contributing to the development of greener and more efficient analytical methods. His research on the environmental impact of petroleum chemicals, including water analysis and the detection of contaminants in industrial discharges, underscores his commitment to sustainability. Dr. Ali’s work bridges the gap between fundamental chemistry and practical, real-world applications in environmental science and health.

Publication Top Notes

  1. Investigations of phytoconstituents, antioxidant and anti-liver cancer activities of Saueda monoica Forssk extracted by microwave-assisted extraction 🍃
  2. Liquid ion exchange methodology for extraction Cr (VI) using azo derivative compound ⚗️
  3. Spectrophotometric Determination of Captopril in Pharmaceutical Formulations based on Ion-Pair Reaction with the Red Congo 💊
  4. Determination of Metoclopramide in Pharmaceutical Commercial using Flow Injection Chemiluminescence Technique 💡
  5. Spectrophotometric Determination of Azithromycin using Oxidative Coupling Reaction 🧪
  6. Spectrophotometric Determination of Carvedilol in Some Pharmaceuticals via an Oxidative Coupling Reaction 💊
  7. Spectrophotometric determination of mesalazine using diazo coupling method 🧬
  8. Synthesis and characterization of some new Indazolone and Carbohydrazide derivatives from azachalcones 🔬
  9. Development and evaluation of a new spectrophotometric method for determination of amlodipine in its pure and pharmaceutical forms using zinc oxide nanoparticles 🧑‍🔬
  10. Determination of Loperamide HCL in Pharmaceutical Preparations using Modified Ion Selective Electrode 🧪

 

 

Armughan Ali | Engineering | Best Researcher Award

Mr. Armughan Ali | Engineering | Best Researcher Award

Lab Demonstrator, Wah Engineering College, Pakistan

Armughan Ali is a driven and innovative software engineer with a deep focus on artificial intelligence (AI) and its applications in solving real-world challenges. With expertise spanning software development, machine learning (ML), deep learning (DL), and natural language processing (NLP), he specializes in building intelligent systems that enhance efficiency and improve user experiences. Armughan thrives in collaborative environments, leveraging his knowledge of software engineering to create impactful AI-driven solutions. His passion for technology drives him to contribute to cutting-edge projects, making meaningful contributions to the future of AI. He is a published researcher and actively works to bridge the gap between AI theory and practice.

Profile

Google Scholar

Education

Armughan Ali is currently pursuing a Bachelor of Science in Software Engineering at HITEC University, Taxila, Pakistan (2020–2024), where he has excelled in both academic and practical aspects of software engineering. His foundation in engineering principles, coupled with a strong interest in artificial intelligence, positions him as a rising star in the field. Prior to this, Armughan completed his FSC (Pre-Engineering) from Punjab College, Wah-Cantt (2017–2019), where he honed his analytical skills and gained a solid grounding in the sciences. His academic journey has been marked by a commitment to excellence and a passion for emerging technologies, with a focus on AI, machine learning, and software development.

Experience

Armughan Ali’s professional journey includes diverse roles that showcase his versatility and expertise. As a Lab Demonstrator at Wah Engineering College (2024–present), he imparts knowledge to students and fosters a collaborative learning environment. He also serves as a Web Developer on Fiverr (2020–present), where he customizes and develops responsive websites for clients. In his previous role as a Graphic Designer at Graphic Saloon (2023–2024), he created on-brand visuals and marketing materials. Additionally, he contributed to digital solutions as a Digital Solutions Specialist at Ever-Green Corporation (2023), focusing on enhancing the company’s digital presence. He also conducted Front-End Development workshops at HITEC University in 2023, training participants on web technologies like HTML, CSS, and JavaScript. These varied experiences underscore his technical, teaching, and leadership capabilities.

Awards and Honors

Armughan Ali has received numerous accolades, affirming his talent and leadership in the tech community. He is the founder and organizer of the prestigious “CodeWar” event at HITEC University, which has become a significant programming competition. His leadership and dedication have been recognized across multiple seasons, including CodeWar Season I, II, and III (2022-2024). In addition to his role as an organizer, Armughan’s talent in math and programming has earned him awards such as the Math Genius and Speed Programming titles at TECTIQS’ 19 and 18 (IQRA University). These honors highlight his exceptional problem-solving skills and contributions to academic and extracurricular activities. His achievements reflect his commitment to advancing his skills and fostering a culture of innovation.

Certifications

Armughan Ali has demonstrated a strong commitment to expanding his technical knowledge through numerous certifications in the fields of software engineering, artificial intelligence, and machine learning. Notable certifications include IBM Full Stack Software Developer (2024), Machine Learning (2024), and Google Advanced Data Analytics (2024). Additionally, he has completed training in AI/ML, .NET FullStack Development, and deep learning, further honing his skills in these advanced domains. His continuous learning approach also led him to certifications in cybersecurity, project management, and various front-end technologies. These certifications attest to his technical proficiency and eagerness to stay ahead of industry trends. Armughan’s focus on continuous education empowers him to tackle complex challenges with confidence and agility.

Research Focus

Armughan Ali’s research interests lie at the intersection of artificial intelligence, machine learning, and healthcare. His work focuses on applying AI to solve complex real-world problems, particularly in disease detection and classification. He has co-authored several research papers on topics such as Alzheimer’s disease prediction, fake news classification, and skin cancer detection using deep learning techniques. His recent research involves the use of vision transformers for medical imaging, including cancer detection and stomach gastric detection. Armughan is also exploring the use of ensemble learning models for improving the accuracy of AI systems in real-world applications. His contributions to AI-driven healthcare research aim to advance the potential of technology in improving patient outcomes. With a deep interest in creating explainable AI models, Armughan strives to enhance transparency in AI decision-making processes.

Publication Top Notes

  1. X-News Dataset for Online News Categorization 📊
  2. xCViT: An Improved Vision Transformer Network for Skin Disease Classification 🧑‍⚕️
  3. An Optimized Weighted Voting-Based Ensemble Learning Approach for Fake News Classification 📰
  4. Enhancing Disability-Inclusive Communication Through DynaFuseNet and Transformer Models for Sign Language Interpretation 🦻
  5. Convolutional Transformer-Based Few-Shot Learning for Stomach Gastric Detection 🍽️
  6. Alzheimer’s Disease Prediction at Early Stage Using Vision Transformer Architecture 🧠
  7. An Efficient Approach for Plant Leaf Disease Detection Using Vision Transformer Architecture 🌿

 

Ujwala Kshirsagar | Electronics Engineering | Women Researcher Award

Dr. Ujwala Kshirsagar | Electronics Engineering | Women Researcher Award

Associate Professor, Symbiosis Institute of Technology, Symbiosis International Deemed University, Pune, India

Dr. Ujwala A. Kshirsagar (Belorkar) is a distinguished academic and researcher in the field of Electronics Engineering. With over 20 years of experience, she currently serves as the Head of Academics and Associate Professor at Symbiosis International Deemed University, Pune. Dr. Kshirsagar has also held significant leadership roles as Professor, Vice Principal, Academic Dean, and Head of Department at HVPM’s College of Engineering and Technology, Amravati. A Ph.D. supervisor, she has guided one student to completion and currently supervises five Junior Research Fellows. Her expertise spans VLSI & Semiconductor Technology, Micro & Nano Fabrication, IoT, and Embedded Systems. Dr. Kshirsagar is dedicated to academic excellence and research innovation, mentoring future engineers and fostering a collaborative learning environment. 🌟📚

Profile

Education

Dr. Ujwala A. Kshirsagar holds a Ph.D. in Electronics Engineering from SGB Amravati University (2012). She earned her M.E. in Digital Electronics from the same university in 2004 with a First-Class distinction. She completed her M.Sc. in Applied Electronics (1999) and B.Sc. in Electronics (1990) from SGB Amravati University, also achieving First-Class marks. Dr. Kshirsagar has built a strong foundation in Electronics through consistent academic excellence, from her secondary education to post-graduate studies. Her academic background, combined with extensive practical experience, positions her as a leading educator and researcher in her field. 🎓📖

Research Focus

Dr. Kshirsagar’s research focuses on VLSI & Semiconductor Technology, Micro & Nano Fabrication, Electronic System Design, and Embedded Systems. She is also interested in Digital Communication, Analog & Digital Chip Design, and VHDL/VLSI Programming. Her work explores cutting-edge developments in microelectronics and digital systems, integrating advanced technologies like IoT to create innovative solutions. Dr. Kshirsagar is committed to advancing the field through both theoretical research and practical applications, shaping the future of electronics engineering. Her research also emphasizes improving semiconductor device performance and enabling next-gen technologies in everyday life. 💡🔬

Publications

  1. “Development of High-Efficiency VLSI Circuits for Signal Processing” 🔌
  2. “Nano Fabrication Techniques for Modern Semiconductor Devices” 💻
  3. “IoT-Based Embedded Systems for Real-Time Data Monitoring” 🌐
  4. “Analog and Digital Chip Design Techniques for Energy-Efficient Systems” ⚡
  5. “VHDL Programming for Advanced Digital Circuit Design” 🖥️

Milkias Berhanu Tuka | Electrical Engineering | Best Researcher Award

Assoc. Prof. Dr. Milkias Berhanu Tuka | Electrical Engineering | Best Researcher Award

Dr, Addis Ababa Science and Technology University, Ethiopia

Milkias Berhanu Tuka (Ph.D.) is an Associate Professor at Addis Ababa Science and Technology University (AASTU) in Ethiopia. With extensive academic and professional experience, he specializes in Electrical and Computer Engineering. Dr. Tuka holds a Ph.D. in Electrical Engineering, with a focus on renewable energy and power systems. He has served in various leadership roles, including as a Special Assistant to the Vice President for Academic Affairs and Associate Head of the Electrical and Computer Engineering Department. Dr. Tuka is a recognized leader in both academia and industry, collaborating internationally with institutions like Otto-von-Guericke University (Germany). His work emphasizes sustainable energy solutions and electrical engineering innovations. 🌍⚡

Profile

Scopus

Strengths for the Award

  1. Extensive Academic and Research Background: Dr. Milkias Berhanu Tuka demonstrates an impressive academic career with significant contributions in the fields of Electrical Engineering, particularly in power systems, renewable energy, and power electronics. His expertise in renewable energies, electrical machines, power electronics, and drives has led to substantial academic achievements, including publishing numerous papers in Scientific Reports and other reputable journals.
  2. International Collaboration and Recognition: His involvement in international projects and partnerships, such as his research with Otto-von-Guericke University in Germany, highlights his capacity for cross-border collaboration. This is evident from his contributions to research and consultancy in projects like the SASCS for DTH under the Europe-Africa Research and Innovation call on Renewable Energy.
  3. Leadership and Influence in Academia: Dr. Tuka has shown notable leadership within academic institutions. His roles as an Associate Professor, Head of the Electrical and Computer Engineering Department, and his position as the Vice President’s Special Assistant for Academic Affairs at Addis Ababa Science and Technology University (AASTU) showcase his organizational and managerial abilities. These positions highlight his responsibility in steering academic programs, overseeing curriculum developments, and ensuring high standards in teaching and research.
  4. Active Contribution to Research Grants and Projects: He has been actively involved in securing and managing multiple research projects and external grants, such as Solar Power System Design, Wind Energy Forecasting, and Consultancy services for the Ethiopian Water Technology Institute. These projects demonstrate his practical application of research and his capacity to drive forward both theoretical and applied research.
  5. Supervision and Mentorship: Dr. Tuka has contributed to the academic development of numerous students, particularly in the supervision of MSc theses and PhD students, helping them to navigate complex research topics and bringing innovative ideas to the forefront.
  6. Diverse Skills and Certifications: His wide array of skills and certifications, such as the completion of Nanodegree Programs in Data Analysis and Programming Fundamentals, along with his recognition from prestigious institutions (e.g., Mandela Washington Fellowship and Honorary Lifetime Membership to International Davis), shows his commitment to lifelong learning and professional growth.

Areas for Improvement

  1. Broader Publication and Citations Reach: While Dr. Tuka has made significant contributions to journals like Scientific Reports, expanding his impact through more high-visibility, high-impact journals, and achieving higher citation counts could further solidify his position as a global thought leader in his field.
  2. Focus on Multidisciplinary Collaboration: Although his work has had a strong focus on electrical engineering and renewable energy, expanding collaborations across multidisciplinary fields (e.g., integrating AI or machine learning into energy systems) could further diversify his research impact and open up new avenues for groundbreaking studies.
  3. Increased Public Engagement: Engaging in more public-facing activities, such as offering talks at global conferences, media interviews, or even online platforms to discuss renewable energy issues or innovations in power systems, could increase his outreach and influence in shaping global energy policy or practices.
  4. Diversifying Research Funding: While Dr. Tuka has excelled in obtaining research grants, diversifying the sources of funding, particularly from international organizations or the private sector, could support even larger-scale projects and increase the impact of his research.

Education

Dr. Tuka obtained his Ph.D. in Electrical Engineering from Adama Science & Technology University and Otto-von-Guericke University, focusing on power quality in wind energy systems. He holds an MSc in Electrical Engineering with a focus on power systems from Adama Science & Technology University. Additionally, he earned a Bachelor’s degree in Electrical-Electronics Technology. Dr. Tuka’s education combines rigorous theoretical learning with hands-on research, particularly in renewable energy solutions and electrical systems optimization. 🎓🔋

Experience

Dr. Tuka has over 15 years of experience in academia and engineering. He is currently an Associate Professor and Special Assistant at AASTU, where he also serves as the Secretary of the Academic Staff Affairs Committee. Previously, he was an Associate Head of the ECE Department at Adama Science and Technology University (ASTU) and a power expert for the ASTU-Mekele University Joint Venture on the Adama-II Wind Power Project. Dr. Tuka has also held leadership roles in various educational projects and is a consultant for renewable energy and power systems. ⚙️🌞

Awards and Honors

Dr. Tuka has received numerous accolades throughout his career, including an Honorary Lifetime Membership from International Davis, U.S., and recognition for his professional contributions to the Department of Electrical and Computer Engineering at ASTU. He is also an awardee of the Mandela Washington Fellowship and has participated in prestigious training programs like the Enel Foundation’s Micro-grid Academy and Open Africa Power. 🏅🌍

Research Focus

Dr. Tuka’s research centers on renewable energy, power systems, electrical machines, and power electronics. His work focuses on optimizing renewable energy integration into the power grid, improving power quality, and designing sustainable energy solutions. Current projects include wind energy forecasting using deep learning, solar power systems, and smart grid technologies. His research aims to provide innovative solutions for energy challenges in Africa and beyond, contributing to the global energy transition. 🌿🔌

Publication Top Notes

  1. A comparative ensemble approach to bedload prediction using metaheuristic machine learning 🌍📊
  2. Design and performance evaluation of a multi-load and multi-source DC-DC converter for electric vehicle systems ⚡🚗
  3. Cable dimension determination using Finite Element Method for gas insulated cables ⚡🔧
  4. Hybrid modeling approach for precise energy estimation based on temperature variations 🌞📐
  5. Maiden application of optimization for load frequency control in microgrids with renewables ⚡🔋
  6. Design of a universal converter for microgrid applications using dynamic programming 🌍🔄
  7. Lyapunov-based neural network model predictive control for energy systems ⚙️🌐
  8. High-efficiency poly-input boost converter for energy storage and EV applications 🔋🚙
  9. Robust load-frequency control for islanded microgrids using 1PD-PID controllers ⚡🔧
  10. Techno-economic analysis of hybrid renewable energy solutions in Cameroon ⚡🌍

Conclusion

Dr. Milkias Berhanu Tuka is undoubtedly a strong candidate for the Best Researcher Award. His academic credentials, research expertise, and leadership in both academia and various research projects highlight his significant contributions to the field of Electrical Engineering. His publications, international collaborations, and impact on both education and research underscore his excellence. With his dedication to innovation and research excellence, Dr. Tuka’s future contributions will likely continue to have a profound impact on the academic community, particularly in renewable energy and power systems, making him a highly deserving candidate for this award. To further enhance his global influence, focusing on broader publication reach, fostering interdisciplinary research, and engaging more publicly would help him elevate his already impressive career.

 

 

Alia Al-Ghosoun | Engineering and Technology | Best Researcher Award

Dr Alia Al-Ghosoun | Engineering and Technology | Best Researcher Award

Assistant professor, Philadephia University, Jordan

Dr. Alia Radwan Al-Ghosoun is an Assistant Professor in the Mechatronics Engineering Department at Philadelphia University, Jordan. With a deep passion for advanced engineering research, she holds a DPhil in Engineering from Durham University, UK, where her work focused on shallow water dynamics and adaptive control methods for hydrodynamic systems. Dr. Al-Ghosoun’s research spans fluid mechanics, computational modeling, and the application of artificial intelligence in engineering problems. She has worked as a post-doctoral researcher at Durham University and has held multiple academic positions at the University of Jordan, where she contributed to the development of energy-efficient systems and intelligent control techniques. Dr. Al-Ghosoun’s commitment to advancing knowledge in hydrodynamics and environmental modeling has resulted in impactful publications and contributions to numerical simulation and uncertainty quantification. She is passionate about improving the practical application of engineering solutions for environmental challenges.

Profile

Scopus

Strengths for the Award

  1. Advanced Academic Background:
    • Dr. Al-Ghosoun holds a Doctor of Philosophy in Engineering from Durham University, UK, where her research focused on shallow water flow dynamics and adaptive control techniques to improve the accuracy of these systems. This is a highly specialized field with significant implications in environmental modeling, water systems, and engineering, marking her as an expert in computational engineering and fluid dynamics.
    • Her post-doctoral research at Durham University further solidifies her expertise, particularly in understanding and quantifying uncertainty in numerical modeling of hydrodynamics, which is crucial for predicting real-world environmental phenomena.
  2. Impactful and Diverse Research Contributions:
    • Dr. Al-Ghosoun has published several peer-reviewed papers in high-impact journals such as Environmental Modelling and Software, Communications in Computational Physics, and International Journal of Computational Methods. These works cover areas such as uncertainty quantification, morphodynamics, and numerical simulation of shallow water flows and hydrosediment processes.
    • Her conference papers and book chapters demonstrate a commitment to advancing computational methods in hydrodynamics and environmental modeling, particularly addressing the challenges of bed topography deformation, fluid-structure interactions, and stress analysis in hydro-sediment systems.
  3. Interdisciplinary Research:
    • Dr. Al-Ghosoun’s research stands at the intersection of mechatronics, engineering, and environmental sciences, with a focus on adaptive control techniques and artificial intelligence. This interdisciplinary approach is essential in addressing complex real-world problems related to fluid dynamics and energy systems.
    • The integration of AI techniques (such as genetic algorithms) in energy consumption optimization and shallow water flow models highlights her innovative approach to solving large-scale engineering problems.
  4. Global Collaboration and Recognition:
    • With international experience as a Post-Doctoral Researcher at Durham University and several collaborative research efforts with Jordanian and UK-based academic institutions, Dr. Al-Ghosoun has developed a robust international network. Her involvement in global research platforms, such as ResearchGate, attests to her active engagement in the academic community and dissemination of her work.
  5. Teaching and Mentoring Experience:
    • Dr. Al-Ghosoun has demonstrated a strong commitment to education as an Assistant Professor at Philadelphia University, where she contributes to the development of young engineers in Mechatronics Engineering. Her role as a Teaching Assistant and Research Assistant at various institutions indicates her foundational experience in nurturing future engineers and scientists.
  6. Recognition of Research Excellence:
    • Dr. Al-Ghosoun’s papers, particularly her works on uncertainty quantification and modeling techniques for shallow water systems, have gained traction in the academic community. For instance, her work published in Environmental Modelling and Software (2021) has already accumulated 10 citations, signaling its importance in the field.

Areas for Improvement

  1. Broader Citation Impact:
    • While Dr. Al-Ghosoun’s work is highly specialized and impactful, the citation counts for some of her research papers remain low (e.g., her paper on stress analysis has 0 citations). Increasing visibility in wider journals and collaborating with researchers in complementary fields could enhance the reach and impact of her publications.
  2. Increased Public Engagement:
    • Engaging in public outreach or community-based projects that demonstrate the application of her research (e.g., how adaptive control methods improve water management or energy efficiency in real-world scenarios) could enhance the broader social impact of her work.
  3. Further Collaborative Interdisciplinary Projects:
    • Although her work spans several fields, further involvement in cross-disciplinary projects—especially those integrating sustainable engineering and climate resilience—could increase the relevance of her research to pressing global challenges, like climate change adaptation and sustainable resource management.

Education

Dr. Alia Radwan Al-Ghosoun earned her Doctor of Philosophy (DPhil) in Engineering from Durham University, UK in January 2021. Her doctoral research focused on understanding the effects of bathymetric movement on shallow water flows and their interaction with the seabed, leading to the development of adaptive control methods for improved accuracy in hydrodynamic simulations. Prior to this, she completed a Post-Doctorate at Durham University in 2022, where she explored the application of uncertainty quantification in complex engineering models. Dr. Al-Ghosoun holds a Master’s Degree in Mechanical Engineering from the University of Jordan, where she developed AI-based predictive models for fuel consumption in Jordan and optimized energy efficiency through genetic algorithms. She also earned her Bachelor’s degree in Mechatronics Engineering from the University of Jordan. Dr. Al-Ghosoun’s academic background equips her with interdisciplinary expertise in engineering and environmental science.

Experience

Dr. Alia Radwan Al-Ghosoun is currently an Assistant Professor at Philadelphia University in the Mechatronics Engineering Department since October 2022, where she teaches and conducts research in engineering systems and adaptive control techniques. Prior to this, she was a Post-Doctoral Researcher at Durham University, UK (2021-2022), focusing on uncertainty quantification in shallow water systems. Dr. Al-Ghosoun completed her DPhil at Durham University (2016-2021), where her research involved modeling shallow water flows and the interaction of bed topography. She has also held roles as a Research Assistant at the University of Jordan’s Water, Energy, and Environment Center (2012-2016) and the King Abdullah Design and Development Bureau (KADDB) (2012). Earlier in her career, she worked as a Teaching Assistant in both Mechatronics and Mechanical Engineering departments at the University of Jordan. Dr. Al-Ghosoun’s interdisciplinary experience blends academia with applied engineering solutions.

Awards and Honors

Dr. Alia Radwan Al-Ghosoun has been recognized for her research excellence and commitment to advancing knowledge in hydrodynamics and adaptive control systems. Her academic achievements are highlighted by her work at Durham University, where she earned a prestigious Doctoral Fellowship for her research on shallow water dynamics and bed interaction. She has also received recognition for her post-doctoral research contributions in uncertainty quantification and numerical simulations. Dr. Al-Ghosoun’s work has been presented at major academic conferences, and she has contributed to a variety of high-impact journal publications. In addition to her research accomplishments, she has been awarded teaching grants to support her role as an educator at Philadelphia University, where she mentors the next generation of Mechatronics engineers. Her consistent efforts to bridge the gap between theoretical research and practical engineering applications have earned her widespread recognition within her academic and professional communities.

Research Focus

Dr. Alia Radwan Al-Ghosoun specializes in hydrodynamic modeling, shallow water flows, and the application of adaptive control systems to improve the accuracy of complex environmental simulations. Her research interests focus on uncertainty quantification and the development of computational models for the numerical simulation of fluid dynamics, particularly in the context of stochastic bed topography and morphodynamics. She has worked extensively on shallow water waves, bathymetric effects, and water-bed interaction. One of her core research goals is to enhance the predictive accuracy of models used for environmental management and engineering systems by incorporating artificial intelligence techniques, such as genetic algorithms and surrogate models. Dr. Al-Ghosoun is passionate about integrating AI-based solutions into environmental and energy systems to address challenges like resource optimization, pollution reduction, and sustainable energy. Her work in hydro-sediment-morphodynamics provides valuable insights into climate change adaptation and water resource management.

Publication Top Notes

  1. Uncertainty quantification for stochastic morphodynamics 🌊🧑‍🔬, AIP Conference Proceedings, 2024.
  2. A Novel Computational Approach for Wind-Driven Flows over Deformable Topography 💨🌍, Lecture Notes in Computer Science, 2024.
  3. A Nonintrusive Reduced-Order Model for Uncertainty Quantification in Numerical Solution of One-Dimensional Free-Surface Water Flows Over Stochastic Beds 📊💧, International Journal of Computational Methods, 2022.
  4. Efficient Computational Algorithm for Stress Analysis in Hydro-Sediment-Morphodynamic Models 💻⚙️, Lecture Notes in Computer Science, 2022.
  5. A surrogate model for efficient quantification of uncertainties in multilayer shallow water flows 🌊🔬, Environmental Modelling and Software, 2021.
  6. A computational model for simulation of shallow water waves by elastic deformations in the topography 🌊⚡, Communications in Computational Physics, 2021.
  7. Uncertainty Quantification of Bathymetric Effects in a Two-Layer Shallow Water Model: Case of the Gibraltar Strait 🏝️🌊, Springer Water, 2020.
  8. A hybrid finite volume/finite element method for shallow water waves by static deformation on seabeds 🌊🧮, Engineering Computations, 2020.
  9. A new numerical treatment of moving wet/dry fronts in dam-break flows 💧🚨, Journal of Applied Mathematics and Computing, 2019.

Conclusion

Dr. Alia Radwan Al-Ghosoun is an exceptional candidate for the Best Researcher Award. Her contributions to the fields of hydrodynamics, uncertainty quantification, and adaptive control systems are not only advancing the understanding of complex environmental processes but are also pioneering new computational techniques that can improve the accuracy and efficiency of engineering systems. Her ability to merge artificial intelligence with environmental modeling positions her as a leader in the field. Her ongoing efforts in teaching, mentoring, and global academic collaborations further highlight her potential to shape the future of engineering and environmental sciences. With a few strategic steps to broaden her citation impact and public visibility, Dr. Al-Ghosoun could solidify her place as a thought leader in her field.

Saibo She | Electrical Engineering | Best Researcher Award

Dr Saibo She | Electrical Engineering | Best Researcher Award 

Ph.D Student, University of Manchester, United Kingdom

Saibo She is a dedicated researcher specializing in electromagnetic non-destructive testing and sensor design. Currently pursuing a PhD at the University of Manchester, UK, he previously earned his bachelor’s degree from Hunan University, China. With a strong foundation in electrical engineering, Saibo has actively contributed to various innovative research projects, focusing on defect detection and material evaluation. He is passionate about applying artificial intelligence to enhance diagnostic methodologies. Beyond academia, Saibo has demonstrated leadership in multiple competitions, reflecting his commitment to innovation and collaboration. His work has led to numerous publications and patents, marking him as a rising star in his field.

Profile

Scopus

Strengths for the Award

  1. Extensive Research Experience: Saibo has been involved in numerous significant research programs, focusing on advanced topics in non-destructive testing and electromagnetic evaluation. His work is supported by prestigious funding, such as the National Natural Science Foundation of China.
  2. Innovative Contributions: He has made substantial contributions to the field, as evidenced by multiple patents and published papers in reputable journals like the IEEE Sensors Journal and IEEE Transactions on Instrumentation and Measurement. His research on eddy current sensors demonstrates a blend of innovation and practical application.
  3. Strong Publication Record: Saibo has co-authored several papers with impactful findings, showcasing his ability to engage in high-quality research and contribute to scientific knowledge. His work on defect detection and materials evaluation reflects a commitment to advancing the field.
  4. Awards and Scholarships: His accolades, including the IEEE Instrumentation and Measurement Graduate Fellowship Award and various scholarships, highlight his academic excellence and recognition by peers and institutions.
  5. Leadership Experience: His role as a group leader in several competitions suggests strong leadership and teamwork skills, which are crucial for collaborative research environments.

Areas for Improvement

  1. Broader Impact: While his research is innovative, exploring avenues to increase the practical impact of his work in industrial applications could enhance his profile. Engaging with industry partners for real-world testing and implementation could broaden his research’s reach.
  2. Interdisciplinary Collaboration: Saibo could benefit from engaging with researchers from different fields to foster interdisciplinary collaboration, which can lead to new perspectives and innovative solutions to complex problems.
  3. Communication Skills: While his publication record is strong, focusing on enhancing presentation and outreach skills could help him communicate his research findings more effectively to diverse audiences, including policymakers and industry stakeholders.

Education

Saibo She is currently pursuing a PhD at the University of Manchester, UK, from September 2022 to June 2026. He previously obtained his bachelor’s degree from Hunan University, China, where he studied from September 2019 to June 2022. His education has provided him with a solid foundation in electrical engineering and materials science, equipping him with the knowledge and skills needed for advanced research. At both institutions, Saibo excelled academically, receiving several scholarships and awards that recognized his outstanding performance. His studies have been complemented by hands-on research experiences, enabling him to apply theoretical concepts to practical challenges in non-destructive testing and sensor technology. Saibo’s educational journey reflects a commitment to excellence and a strong desire to contribute to advancements in his field.

Experience 

Saibo She has extensive research experience, starting in July 2019, where he has been involved in multiple significant projects. His work includes analyzing mechanical stress wave mechanisms in silicon carbide power electronic devices and exploring damage mechanisms using nonlinear electromagnetic acoustic emission methods. He has contributed to research funded by the National Natural Science Foundation of China and participated in projects related to non-destructive testing techniques. Saibo’s main responsibilities include the simulation and analysis of electromagnetic fields, the design and evaluation of electromagnetic sensors, and hardware circuit design. He has also constructed experimental platforms for testing and validation purposes. His involvement in these projects showcases his technical expertise and ability to tackle complex engineering problems, making him a valuable asset in the field of non-destructive evaluation.

Awards and Honors 

Saibo She has received numerous awards and honors throughout his academic career. In March 2023, he was awarded the IEEE Instrumentation and Measurement Graduate Fellowship Award. He is a recipient of the China Scholarship Council (CSC) and University of Manchester Joint Scholarship, covering the period from 2022 to 2026. During his time at Hunan University, he received several accolades, including the Graduate Student National Scholarship for two consecutive years (2020-2021 and 2019-2020) and the Academic First-Class Scholarship. Additionally, he was recognized as an Outstanding Graduate Student for the 2019-2020 academic year. His achievements in competitions include the Central China Second Prize in the China Sensor Innovation and Entrepreneurship Competition and multiple awards in electronic design competitions. These recognitions underscore his dedication to research excellence and innovation in engineering.

Research Focus

Saibo She’s research focuses on the design of eddy current array sensors and the evaluation of ferromagnetic materials, particularly through the study of hysteresis loops and Barkhausen magnetic noise. He is keenly interested in defect diagnosis and identification utilizing artificial intelligence algorithms, aiming to enhance the capabilities of non-destructive testing techniques. His work addresses challenges in materials science and engineering, particularly in improving the reliability and efficiency of sensor technologies. By integrating machine learning approaches into traditional testing methods, Saibo seeks to push the boundaries of current evaluation techniques. His research not only contributes to academic knowledge but also has practical implications for industries requiring advanced non-destructive testing solutions. Saibo’s commitment to innovation and his technical expertise position him as a leading researcher in the field, with the potential to significantly advance the understanding and application of electromagnetic testing methods.

Publication Top Notes

  • Flexible Differential Butterfly-Shape Eddy Current Array Sensor for Defect Detection of Screw Thread 📄
  • Flexible Floral Eddy Current Probe for Detecting Flaws in Metal Plate 📄
  • Optimal Design of Remote Field Eddy Current Testing Probe for Ferromagnetic Pipeline Inspection 📄
  • An Innovative Eddy Current Sensor with E-Core Ferrite Resistant to Lift-Off and Tilt Effects 📄
  • Inspection of Defects Depth for Stainless-Steel Sheets Using Four-Coil Excitation Sensor and Deep Learning 📄
  • Evaluation of Defects Depth for Metal Sheets Using Four-Coil Excitation Array Eddy Current Sensor and Improved ResNet18 Network 📄
  • Thickness Measurement and Surface-Defect Detection for Metal Plate Using Pulsed Eddy Current Testing and Optimized Res2Net Network 📄
  • Simultaneous Measurements of Metal Plate Thickness and Defect Depth Using Low Frequency Sweeping Eddy Current Testing 📄
  • Size-Distinguishing Miniature Electromagnetic Tomography Sensor for Small Object Detection 📄
  • Diffusion Velocity of Eddy Current in Metallic Plates Using Point-Tracing Method 📄
  • Temperature Monitoring of Vehicle Brake Drum Based on Dual Light Fusion and Deep Learning 📄

Conclusion

Saibo She is an excellent candidate for the Research for Best Researcher Award due to his impressive research accomplishments, innovative contributions, and strong leadership capabilities. By addressing the areas for improvement, such as expanding the practical impact of his research and enhancing interdisciplinary collaborations, he can further strengthen his profile. His trajectory indicates a promising future in research and innovation, making him a worthy recipient of this award.

 

 

Gokhan Basar | Mechanical Engineering | Best Researcher Award

Dr. Gokhan Basar | Mechanical Engineering | Best Researcher Award

Research Assistant at Industrial Engineering, Turkey

Dr. Gokhan Basar is a dedicated researcher and assistant professor in the Department of Industrial Engineering at Osmaniye Korkut Ata University, Turkey. Born on January 1, 1989, in Tarsus, Turkey, he has developed a strong academic and professional foundation in mechanical engineering. Dr. Basar holds a PhD in Mechanical Engineering, specializing in the production of reinforced aluminum matrix composites. He has contributed significantly to the field through his research on friction stir welding and optimization techniques, establishing himself as an expert in machinability and mechanical properties of materials. His commitment to advancing engineering knowledge is evident in his numerous publications and active participation in national and international conferences.

Profile:

Google Scholar

Strengths for the Award:

  1. Diverse Research Areas: Dr. Basar has an extensive range of research interests including Friction Stir Welding, machinability of materials, and optimization techniques. This diversity reflects a strong capability to contribute to various fields within engineering.
  2. Academic Qualifications: With a PhD in Mechanical Engineering and multiple relevant master’s and bachelor’s degrees, Dr. Basar possesses a solid educational foundation that underpins his research.
  3. Significant Contributions: His published works, including book chapters and numerous journal articles, indicate active engagement in research. The citation metrics (42 citations and an H-index of 4) highlight that his work is recognized and valued by the academic community.
  4. Research Methodology Expertise: Dr. Basar’s proficiency in experimental design and optimization methods, particularly the Taguchi Method and Grey Relational Analysis, showcases his ability to apply advanced statistical techniques to real-world engineering problems.
  5. Active Conference Participation: Regular attendance at national and international conferences demonstrates a commitment to staying updated with the latest developments in his field and sharing his findings with the broader scientific community.
  6. Journal Refereeing: Serving as a referee for multiple reputable journals illustrates his involvement in the academic process and recognition by peers.

Areas for Improvement:

  1. Increased Collaboration: While Dr. Basar has a solid publication record, collaboration with researchers from diverse fields could enhance the breadth and impact of his research.
  2. Enhancing Citation Impact: Although his citation metrics are commendable, focusing on publishing in high-impact journals could further increase his visibility and citation rate.
  3. Broader Public Engagement: Engaging with industry stakeholders and public forums could help translate his research findings into practical applications, increasing societal impact.
  4. Exploration of Emerging Technologies: Staying abreast of emerging technologies in materials science and mechanical engineering could provide new avenues for research and innovation.

Education:

Dr. Gokhan Basar’s educational journey began with a Bachelor’s degree in Mechanical Engineering, which laid the groundwork for his advanced studies. He earned his MSc in Mechanical Engineering from Iskenderun Technical University (2013-2016), where he focused on optimizing welding parameters in friction stir welding. His research culminated in a thesis that highlighted his proficiency in practical applications of engineering principles. Dr. Basar continued his academic pursuit at Osmaniye Korkut Ata University, where he completed his PhD in Mechanical Engineering (2017-2023). His doctoral research investigated the production of SiC and B4C particle-reinforced aluminum matrix composites through powder metallurgy, further showcasing his ability to innovate in materials engineering. Throughout his academic career, Dr. Basar has demonstrated a strong commitment to educational excellence and research development.

Experience:

Dr. Gokhan Basar has amassed extensive experience in academia, starting his career as a Research Assistant in the Department of Mechanical Engineering at Iskenderun Technical University from 2013 to 2016. His responsibilities included conducting research, assisting in teaching, and engaging in various engineering projects. In 2016, he transitioned to Osmaniye Korkut Ata University, where he currently serves as a Research Assistant in the Department of Industrial Engineering. In this role, Dr. Basar has focused on advancing knowledge in the fields of friction stir welding, materials machinability, and optimization methods. He has participated in numerous conferences, enhancing his professional network and contributing to the scientific community. His dedication to research and education has positioned him as a prominent figure in mechanical engineering, with a strong emphasis on innovative practices and experimental design.

Research Focus:

Dr. Gokhan Basar’s research focuses primarily on advanced welding techniques, particularly Friction Stir Welding (FSW), and the machinability and mechanical properties of materials. His expertise extends to optimization methods, including the Taguchi Method, Response Surface Methodology, and Grey Relational Analysis, enabling him to develop effective strategies for improving material performance and process efficiency. He is particularly interested in the production of composite materials, investigating the use of SiC and B4C particles in aluminum matrices to enhance their mechanical properties. His research also includes the design of experiments and multi-response optimization, providing insights into surface quality and operational parameters in various manufacturing processes. Dr. Basar’s commitment to innovation in mechanical engineering drives his work to address contemporary challenges and contribute to the evolution of engineering practices.

Publications Top Notes:

  1. Optimization of machining parameters in face milling using multi-objective Taguchi technique 📄
  2. Modeling and optimization of face milling process parameters for AISI 4140 steel 📄
  3. Determination of the optimum welding parameters for ultimate tensile strength and hardness in friction stir welding of Cu/Al plates using Taguchi method 📄
  4. Optimization of cutting parameters in hole machining process by using multi-objective Taguchi approach 📄
  5. Modeling and optimization for fly ash reinforced bronze-based composite materials using multi-objective Taguchi technique and regression analysis 📄
  6. Multi-response optimization in drilling of MWCNTs reinforced GFRP using grey relational analysis 📄
  7. Delik İşleme Prosesinde Kesme Parametrelerin Taguchi Metodu ve Regresyon Analiz Kullanılarak Modellenmesi ve Optimizasyonu 📄
  8. Kolemanit ve Boraks Takviyeli Fren Balatalarının Sürtünme Performansı 📄
  9. Sıcak presleme yöntemi ile üretilmiş uçucu kül takviyeli bronz matrisli fren balata malzemelerinin sürtünme-aşınma özellikleri üzerine kolemanit miktarının etkisi 📄
  10. Mathematical Modeling and Optimization of Milling Parameters in AA 5083 Aluminum Alloy 📄
  11. 316L Paslanmaz Çeliklerin Frezeleme işlemindeki Yüzey Pürüzlülüğün ANFIS ile Modellenmesi 📄
  12. Bronz Esaslı Kompozit Sürtünme Malzemelerin Üç Nokta Eğme Mukavemetinin Taguchi Metodu ile Optimizasyonu 📄
  13. Statistical Investigation of the Effect of CO2 Laser Cutting Parameters on Kerf Width and Heat Affected Zone in Thermoplastic Materials 📄
  14. A new hybrid meta-heuristic optimization method for predicting UTS for FSW of Al/Cu dissimilar materials 📄
  15. Prediction of surface hardness in a burnishing process using Taguchi method, fuzzy logic model and regression analysis 📄
  16. Multi-objective optimization of cutting parameters for polyethylene thermoplastic material by integrating data envelopment analysis and SWARA-based CoCoSo approach 📄
  17. Kompozit Malzemelerin Delme İşleminde İtme Kuvvetinin Taguchi Metodu ile Optimizasyonu ve Regresyon Analizi ile Tahmini 📄
  18. Tepki yüzeyi metodolojisi kullanılarak nanokompozitin delinmesinde oluşan itme kuvvetinin modellenmesi ve analizi 📄
  19. Analysis and Optimization of Ball Burnishing Process Parameters of AA 7075 Aluminium Alloy with Taguchi Method 📄
  20. The Effect of Colemanite and Borax Reinforced to the Friction Performance of Automotive Brake Linings 📄

Conclusion:

Dr. Gokhan Basar exemplifies the qualities of a strong candidate for the Research for Best Researcher Award. His extensive research experience, educational background, and contributions to the field of engineering position him as a noteworthy researcher. By focusing on collaboration, increasing his publication impact, and engaging with the broader community, he could further enhance his profile as a leading researcher. His commitment to advancing knowledge in his areas of expertise makes him a deserving candidate for this prestigious award.