Yang Hong Xia | Energy | Best Researcher Award

Prof. Yang Hong Xia | Energy | Best Researcher Award 

Distinguished Researcher, Zhejiang University, China

🌟 Yanghong Xia is a Professor in the Department of Electrical Engineering and serves as the director of the research center at the Institute of Hydrogen Energy, Zhejiang University. He is a recipient of the prestigious Zhu Kezhen Scholarship and has been recognized with the Excellent Doctoral Dissertation award from Zhejiang University and Zhejiang Province. Prof. Xia has authored over 100 academic papers, including highly cited works published in notable journals like Nature and Cell, and holds more than 30 patents. His contributions have earned him multiple provincial and ministerial first prizes, including the Zhejiang Science and Technology Progress Award. His research focuses on hydrogen production through water electrolysis using renewable energy sources and the stability of AC/DC hybrid distribution networks.

Publication Profile

Google Scholar

Education

🎓 Education: Yanghong Xia completed his B.S. at Huazhong University of Science and Technology in 2014 and obtained his Ph.D. from Zhejiang University from 2014 to 2019. He was a visiting Ph.D. student at Nanyang Technological University, Singapore, from 2017 to 2018 and a postdoctoral fellow at Zhejiang University from 2019 to 2021. He also served as a visiting scholar at Cambridge University in England from 2019 to 2020 and is currently a Distinguished Researcher at Zhejiang University.

Experience

🔍 Experience: Prof. Xia has an extensive research background, having been a postdoctoral fellow and a distinguished researcher at Zhejiang University. His international experience includes visiting positions at Nanyang Technological University and Cambridge University, enhancing his expertise in hydrogen energy and electrical engineering.

Research Interests

🔋 Research Interests: His research interests encompass hydrogen production from renewable energy sources, enhancement of hydrogen production using electric and magnetic fields, hydrogen electrolysis power sources, microgrids, distribution networks, advanced control in power conversion, and stability analysis of new-type power systems.

Awards

🏆 Awards: Prof. Xia has received several prestigious awards, including the Zhu Kezhen Scholarship, Excellent Doctoral Dissertation of Zhejiang University/Zhejiang Province, and various first prizes in science and technology, such as the Zhejiang Science and Technology Progress Award and the China Electric Power Science and Technology Progress Award.

Publications

Here are some of Prof. Yanghong Xia’s notable publications:

Hydrogen Production from Renewable Energy Sources: A Comprehensive Review

Electric Field and Magnetic Field Effects on Hydrogen Production

Stability Analysis of AC/DC Hybrid Distribution Networks

Advanced Control Strategies for Power Conversion in Microgrids

The Role of Hydrogen in Future Energy Systems

 

Frederic Hermann Emakoua | Photovoltaic Energy | Best Innovation Award

Mr Frederic Hermann Emakoua | Photovoltaic Energy | Best Innovation Award

Phd Student, UNIVERSITY OF YAOUNDE 1, Cameroon

Hermann Frédéric Emakoua is a dedicated Cameroonian researcher and PhD student at the University of Yaoundé I, specializing in electronics and renewable energy. Born and raised in Essomba, Yaoundé, he has cultivated a strong academic background, achieving multiple degrees in physics and engineering. Hermann is passionate about innovation in photovoltaic technology, particularly through the integration of advanced systems. Outside of academia, he is an accomplished athlete, with a history of success in judo and wrestling, reflecting his commitment to discipline and teamwork. His interests extend to music and tourism, showcasing his well-rounded personality. Hermann actively engages in the research community, participating in conferences to share insights and foster collaboration.

Profile

Google Scholar

Strengths for the Award

  1. Innovative Research Focus:
    • Hermann’s research on “Amplification of Very Low Input Voltages of PV Panels Using a Duffing Oscillator” addresses a critical challenge in photovoltaic technology. By exploring non-linear systems for energy amplification, his work contributes to innovative solutions in renewable energy, an area of increasing global importance.
  2. Solid Academic Foundation:
    • With a comprehensive academic background in physics and electrical engineering, Hermann possesses the theoretical knowledge necessary for pioneering research. His educational journey, culminating in his current PhD studies, demonstrates his dedication to mastering complex concepts.
  3. Practical Skills:
    • His skills in the design and production of electronic systems and electrical systems position him to implement theoretical findings into practical applications. This hands-on experience is crucial for innovation, as it bridges the gap between research and real-world solutions.
  4. Technical Proficiency:
    • Hermann’s familiarity with a variety of design and simulation software (e.g., NI MULTISIM, PROTEUS, CST) enhances his ability to develop and test innovative concepts effectively. This technical expertise is vital for creating and refining prototypes in his research.
  5. Engagement in Professional Development:
    • Participation in conferences like ACP2021 indicates his commitment to sharing his findings and learning from others in the field. This engagement fosters collaboration and further innovation through the exchange of ideas.

Areas for Improvement

  1. Enhanced Publication Output:
    • While Hermann has made a significant contribution with his publication, increasing the number of publications could enhance his visibility in the research community. Regularly sharing findings can establish him as a thought leader in his area of study.
  2. Language Skills Development:
    • Improving his English proficiency could expand his ability to access international research, communicate findings, and collaborate with a broader audience. This skill is particularly valuable in global research settings.
  3. Broader Collaboration:
    • Engaging with interdisciplinary teams could lead to new insights and approaches in his work. Collaborations with experts from different fields could enhance the innovative aspects of his research.

Education

Hermann Frédéric Emakoua’s educational journey is marked by a commitment to excellence in physics and engineering. He has been a doctoral student at the University of Yaoundé I since 2015, following a Master II in Electronics, Electrotechnics, and Automation (2013-2014) from the same institution. Prior to that, he completed his Master 1 in Physics with a focus on Electronics, Electrotechnics, and Automation in 2012-2013. Hermann also holds a Bachelor’s degree in Physics, obtained at the University of Douala in 2011-2012. His earlier education includes part-time studies in telecommunications and networks at the IUG Institute of Douala. He began his academic career with a Baccalaureate in Electricity from Lycée technique de Bafoussam. With a strong foundation in both theoretical and practical aspects of science and engineering, Hermann is well-equipped to tackle complex challenges in his research area.

Experience 

Hermann Frédéric Emakoua has accumulated diverse experiences that enhance his academic and professional profile. As a doctoral student at the University of Yaoundé I, he has engaged in research focused on photovoltaic energy systems, particularly in amplifying low input voltages using innovative approaches like the Duffing Oscillator. His training includes hands-on experiences, such as working with single-phase and three-phase generators, and instrumentation for generator sets. Additionally, he has undergone part-time training in telecommunications systems, including video surveillance and signal processing. Hermann’s practical skills are complemented by his proficiency in design and simulation software, which he applies to his research projects. His participation in the Second African Conference on Fundamental and Applied Physics in 2021 further demonstrates his commitment to advancing knowledge in his field. Hermann’s blend of theoretical knowledge and practical application positions him as a promising researcher in electronics and renewable energy.

Research Focus

Hermann Frédéric Emakoua’s research focus centers on advancing photovoltaic technology, specifically the amplification of very low input voltages using a Duffing oscillator. This innovative approach aims to enhance the efficiency of solar panels, addressing critical challenges in renewable energy utilization. Hermann’s work seeks to improve energy conversion processes, making solar energy systems more effective and accessible. By integrating principles of non-linear dynamics with practical engineering, he explores new avenues for optimizing the performance of photovoltaic panels. His interest in electrical systems design complements his research, allowing him to investigate practical applications of his findings. Hermann’s participation in conferences, such as the Second African Conference on Fundamental and Applied Physics, underscores his commitment to sharing insights and collaborating with peers in the field. Overall, his research contributes significantly to the ongoing pursuit of sustainable energy solutions, aligning with global efforts to enhance renewable energy technologies.

Publication Top Notes

  • Amplification of Very Low Input Voltages of PV Panels Using a Duffing Oscillator 🌞🔋

Conclusion

Hermann Frédéric Emakoua demonstrates strong potential as a candidate for the Best Innovation Award through his innovative approach to photovoltaic energy. His research effectively addresses key challenges in the field and reflects a commitment to practical solutions. By focusing on improving his publication record and language skills, as well as seeking interdisciplinary collaborations, he can further elevate his impact in the academic and research communities. Overall, his dedication to innovation and development in renewable energy positions him as a promising researcher worthy of recognition.

 

 

Ganesh Datt Sharma | Solar Cells | Best Researcher Award

Prof Dr Ganesh Datt Sharma | Solar Cells | Best Researcher Award

Professor, The LNM Institute of Information Technology, India

Prof. Ganesh Datt Sharma is an esteemed Emeritus Professor at The LNM Institute of Information Technology (LNMIIT), Jaipur, India. With a career spanning nearly four decades, he has made significant contributions to the fields of organic electronics and optoelectronic devices. His research primarily focuses on organic solar cells and related materials. Prof. Sharma’s commitment to academia is reflected in his mentorship of numerous Ph.D. students, many of whom have pursued research globally. He has established extensive international collaborations, enhancing the impact of his work on a global scale. An active member of various scientific committees, he is dedicated to advancing research in renewable energy technologies.

Profile

Scopus

Strengths for the Award

  1. Extensive Academic Background: Prof. Sharma holds a Ph.D. from IIT Delhi in Organic Semiconducting Materials and has a strong foundational education in Physics. His credentials reflect a deep understanding of the field.
  2. Significant Research Contributions: With over 11,300 citations and an h-index of 52, Prof. Sharma’s work is widely recognized in the field of organic electronics and photovoltaics. His publications in reputable journals highlight his active engagement in cutting-edge research.
  3. Diverse Research Interests: His focus on organic solar cells, polymers, and nanomaterials aligns with current trends in sustainable energy solutions, showcasing his relevance in the field.
  4. International Collaboration: Prof. Sharma has successfully collaborated with numerous prestigious institutions worldwide, including those in Europe, North America, and Asia, enhancing the global impact of his research.
  5. Mentorship and Ph.D. Guidance: He has supervised 18 Ph.D. students, many of whom are pursuing advanced research internationally, demonstrating his commitment to fostering the next generation of scientists.
  6. Awards and Recognitions: His accolades, including the Early Career Research Award and various fellowships, underscore his contributions to the scientific community.
  7. Leadership Roles: As Dean of Research and Development at LNMIIT and a member of multiple scientific advisory committees, he exhibits strong leadership and organizational skills.

Areas for Improvement

  1. Broader Public Engagement: While Prof. Sharma’s research is highly specialized, increasing efforts in public outreach and education about the importance of organic solar cells could enhance community engagement and awareness.
  2. Interdisciplinary Collaborations: Exploring interdisciplinary collaborations beyond physics, such as with environmental sciences and policy-making, could broaden the applicability and impact of his research.
  3. Increased Visibility: Although his publications are well-cited, developing strategies for more visible outreach, such as public lectures or popular science articles, could further elevate his profile in the broader scientific community.
  4. Grant Acquisition: While he has successfully completed numerous projects, expanding efforts to secure larger grants or funding for innovative projects could facilitate even more ambitious research initiatives.

Education 

Prof. Ganesh Datt Sharma completed his Ph.D. in Organic Semiconducting Materials at the Indian Institute of Technology, Delhi, in 1985. Prior to that, he earned his M.Sc. in Physics from HNB University, Srinagar, Uttaranchal, in 1979, where he received a gold medal for his academic excellence. He also holds a B.Sc. in Physics from the same university, awarded in 1977. His rigorous education provided a strong foundation for his research career, allowing him to explore the fundamental photo-physics of next-generation materials. His academic journey has been marked by significant achievements, including prestigious fellowships during his doctoral studies, which have shaped his expertise and research focus in organic electronics.

Experience

Prof. Sharma has an extensive academic and research career, currently serving as Emeritus Professor at LNMIIT, Jaipur, since August 2022. He previously held various positions at JNV University, Jodhpur, including Professor and Dean of Research and Development. His tenure at JNV University spanned from 1985 to 2015, during which he contributed significantly to the Physics Department. He has also been a Visiting Scientist at the State University of New Jersey, USA, where he worked in the Department of Electrical and Computer Science. His leadership in research is underscored by his role as a chairman and expert member in multiple project review committees for organizations like DRDO and the European Commission. Prof. Sharma has successfully led numerous national and international research projects, fostering collaborations that enhance the quality and impact of his research.

Awards and Honors

Prof. Ganesh Datt Sharma has received numerous accolades throughout his illustrious career. He was honored with the Early Career Research Award from SERB-DST, Government of India, in 1989, as well as the Young Scientist Award from CSIR, New Delhi, in the same year. His academic excellence was recognized with a gold medal for his M.Sc. in Physics from HNB University. Additionally, he was awarded the CSIR SRF Fellowship during his Ph.D. at IIT Delhi. Prof. Sharma has also received the BOYSCAST Fellowship from DST, enabling research opportunities in the USA. His contributions to scientific committees include chairing the Project Review Committee for DRDO from 2018 to 2022 and serving as an expert member for various international science and technology committees. His extensive involvement in editorial boards of leading journals further exemplifies his commitment to advancing scientific research.

Research Focus

Prof. Ganesh Datt Sharma’s research focuses on organic solar cells, polymers, and various organic electronic materials. His work aims to understand the fundamental photo-physics of next-generation photoactive materials, including conjugated polymers and small molecules. He specializes in developing efficient photovoltaic devices and dye-sensitized solar cells, contributing to advancements in renewable energy technologies. Prof. Sharma’s research interests encompass charge transport, transient optoelectronic properties, and wearable sensors, reflecting a comprehensive approach to addressing contemporary energy challenges. He has successfully completed numerous projects funded by national agencies such as DST, CSIR, and ISRO, and has ongoing international collaborations across multiple countries. His research not only contributes to theoretical knowledge but also aims to develop practical solutions for energy conversion and storage, promoting sustainable practices in technology.

Publication Top Notes

  • An Asymmetric Coumarin-Anthracene Conjugate as Efficient Fullerene-Free Acceptor for Organic Solar Cells 🌞
  • All-Small-Molecule Ternary Organic Solar Cell with 16.35% Efficiency Enabled by Chlorinated Terminal Units 🌱
  • Exploiting Mechanism of Enhanced Charge Transfer in Ternary Organic Solar Cells at Low Energy Loss ⚡
  • Halogenation Strategy: Simple Wide Band Gap Nonfullerene Acceptors with the BODIPY-Thiophene-Backboned Polymer Donor for Enhanced Outdoor and Indoor Photovoltaics ☀️
  • Advancing Multifunctional Semitransparent Organic Solar Cells through Strategic Optical Layer Integration 🏗️
  • Small Molecular Donor Materials Based on β-β-Bridged BODIPY Dimers with a Triphenylamine or Carbazole Unit for Efficient Organic Solar Cells 📈
  • Effect of Meso- or β-Functionalization of Porphyrins on the Photovoltaic Properties of Organic Solar Cells 💡
  • Solution-Processed Co3O4-Based Hole Transport Layer for Nonfullerene Organic Solar Cells 🧪
  • Organic Solar Cells Based on Non-Fullerene Low Molecular Weight Organic Semiconductor Molecules 📚
  • Structural and Optical Phenomena of Thermally Treated Fullerene-Based Nanocomposites with Metal Nanoparticles for Sensing Applications 🧬

Conclusion

Prof. Ganesh Datt Sharma’s impressive academic background, substantial research contributions, and commitment to mentorship position him as an exceptional candidate for the Best Researcher Award. His strengths in research and collaboration are complemented by opportunities for growth in public engagement and interdisciplinary work. Recognizing his contributions through this award would not only honor his achievements but also inspire future researchers in the field of organic electronics and renewable energy.

 

 

Mohammad-Mahdi Pazuki | Energy Systems Engineering | Best Researcher Award

Mr Mohammad-Mahdi Pazuki | Energy Systems Engineering | Best Researcher Award

Ph.D Student, KN Toosi University, Iran

Mohammad-Mahdi Pazuki is an accomplished researcher and engineer specializing in energy systems and policy analysis. He has made significant contributions to sustainable energy transitions through innovative research and interdisciplinary projects. His work blends advanced technologies, such as machine learning and optimization algorithms, with real-world applications in renewable energy solutions. He is dedicated to addressing critical energy challenges in Iran and beyond, and his commitment to academic excellence is evidenced by his top rankings in national exams and university performance. He actively engages in teaching and mentorship, fostering the next generation of engineers and researchers.\

Profile

Orcid

Strengths for the Award

  1. Innovative Research: Mohammad-Mahdi Pazuki has made significant contributions to the field of energy systems through his advanced research in energy policy analysis, optimization, and renewable energy solutions. His work, especially in machine learning applications for carbon capture and renewable energy systems, showcases his ability to integrate cutting-edge technology with practical energy solutions.
  2. Strong Academic Background: With an impressive GPA of 18.88/20 in his M.Sc. in Energy Systems Engineering, he ranks second in his university. His academic achievements, alongside his top ranking in the national university entrance exam, highlight his dedication and competence in his field.
  3. Diverse Skill Set: Pazuki’s proficiency in programming (MATLAB, Python), machine learning, and energy system modeling demonstrates a robust technical skill set. His ability to apply various optimization algorithms and engage in CFD simulation further solidifies his expertise.
  4. Publications and Projects: He has authored and contributed to multiple high-quality publications, many of which are under review or in progress. His diverse projects, ranging from solar desalination systems to energy policy assessments, indicate a well-rounded approach to research and practical applications.
  5. Teaching and Leadership Experience: His role as a teaching assistant and involvement in organizing significant conferences and projects reflect strong communication and leadership abilities. His participation in judging panels for technology festivals demonstrates his commitment to advancing the field.

Areas for Improvement

  1. Broader Impact Assessment: While his research is innovative, further emphasis on the societal and environmental impacts of his work could enhance its relevance. Developing frameworks to measure these impacts could provide more comprehensive insights into the implications of his research.
  2. Networking and Collaboration: Although he has engaged in various projects, expanding his professional network through international collaborations could lead to more diverse perspectives and opportunities for joint research initiatives.
  3. Public Engagement: Increasing public engagement through outreach initiatives or community projects related to energy sustainability could enhance the visibility of his work and promote awareness of renewable energy technologies.

Education

Mohammad-Mahdi holds a Master’s degree in Energy Systems Engineering from K.N. Toosi University of Technology, where he achieved a GPA of 18.88/20, ranking second in his program. He completed his Bachelor’s degree in Mechanical Engineering at the same institution, with a GPA of 14.93/20. His academic journey began with a diploma in Physics and Mathematics from Roshd High School, where he graduated with a GPA of 19.70/20. His education has equipped him with a strong foundation in engineering principles, energy systems, and policy analysis, enabling him to tackle complex challenges in sustainable energy.

Experience

Mohammad-Mahdi’s professional experience encompasses a variety of research and engineering roles. He has served as a researcher at Niroo Research Institute and the Energy Integration Lab, contributing to projects on energy policy, optimization, and renewable technologies. He has also held executive positions, including Chief Operating Officer at a digital marketing agency. His internships in construction and power plant engineering have provided practical insights into the energy sector. Additionally, he has taught courses in system dynamics and decision-making, showcasing his dedication to education and knowledge dissemination in the field of energy systems.

Research Focus

Mohammad-Mahdi’s research interests span energy policy and economics, system dynamics, renewable energy, and machine learning applications. He is particularly focused on enhancing energy efficiency and sustainability through innovative solutions, such as geothermal poly-generation systems and carbon capture technologies. His work in electricity demand-side management aims to inform effective policymaking for sustainable energy transitions. He also explores the integration of renewable energy in urban settings and the socio-environmental implications of energy systems. His interdisciplinary approach combines technical expertise with an understanding of environmental and social challenges in the energy sector.

Publication Top Notes

  • “Enhancing efficiency in an innovative geothermal poly-generation system for electricity, cooling, and freshwater production through integrated multi-objective optimization: A holistic approach to energy, exergy, and enviro-economic effects”
  • “An Intelligent Solvent Selection Approach in Carbon Capturing Process: A Comparative Study of Machine Learning Multi-Class Classification Models”
  • “Solar-Powered Bitcoin Mining: Bridging Economic Viability with Environmental Sustainability”
  • “Exploring Evaporation Dynamics in Solar Stills: Influence of Fabric Material Composition and Brine Concentration”
  • “Optimization and Analysis of Adsorption Desalination Systems: Integrating Multi-Objective Particle Swarm Optimization (MOPSO) with Environmental, Economic, and Exergy Analyses”
  • “The evaporation experiments on carboxyl-functionalized multi-walled carbon nanotube/polyvinyl alcohol – polyester (3D CNT/PVA-PET) fabric with hole array”
  • “Modeling and assessment of Iran’s electricity demand-side management (DSM) policies applying system dynamics (SD) approach”
  • “Intelligent Energy Management: Strategies, Applications, and Policy Implications” (Book in progress)

Conclusion

Mohammad-Mahdi Pazuki stands out as a leading candidate for the Best Researcher Award due to his innovative contributions to energy systems, strong academic credentials, diverse skill set, and impactful research. By focusing on enhancing the societal impact of his work and expanding his collaborative efforts, he can further elevate his research profile and contribute meaningfully to the field of energy sustainability. His commitment to advancing energy policy and technology positions him as a promising researcher poised to make significant contributions in the future.

Khaled Osman | Pesticides | Best Researcher Award

 Prof Dr. Khaled Osman | Pesticides | Best Researcher Award

Professor at  Alexandria University/Faculty of Agriculture, Egypt

Khaled Osman is a prominent researcher and educator in pesticide chemistry and toxicology at Alexandria University, Egypt. Born on July 20, 1961, in Alexandria Governorate, he has dedicated over three decades to advancing the field through teaching and research. With a B.Sc., M.Sc., and Ph.D. in Pesticides Chemistry from Alexandria University, Khaled has authored numerous publications and participated in various national and international workshops. His research focuses on the toxicity of pesticides, bioremediation, and environmental safety. An active member of several professional organizations, he has earned recognition for his significant contributions to agricultural and environmental sciences, receiving national awards for his work. Khaled continues to inspire students and researchers alike, emphasizing the importance of sustainable practices in agriculture.

Profile:

Education: 

Khaled Osman holds a comprehensive academic background in pesticide chemistry from Alexandria University. He earned his Bachelor of Science (B.Sc.) in Pesticides Chemistry in 1983, which laid the foundation for his career in agricultural sciences. Following this, he pursued a Master of Science (M.Sc.) in 1987, focusing on “Toxicokinetics of Insecticides,” exploring the effects of methyl and ethyl substitution on the delayed neurotoxicity of specific compounds. In 1991, he completed his Doctor of Philosophy (Ph.D.) in Pesticides Chemistry, with a thesis titled “Comparative Neurological Lesions of Organophosphorus Compounds Induced and Non-induced Delayed Neuropathy.” His educational journey has equipped him with extensive knowledge and expertise, which he has applied in both teaching and research throughout his career, making him a leading figure in the field.

Experience: 

Khaled Osman boasts extensive experience in academia and research, particularly in pesticide chemistry and environmental science. He has been a faculty member at Alexandria University for over 30 years, teaching courses in organic, physical, and analytical chemistry, as well as specialized subjects like pesticide chemistry and toxicology. His research activities include assessing the toxicity of metals and pesticides to mammals, studying neurotoxicity in workers exposed to pesticides, and developing bioremediation strategies to mitigate environmental impacts. Khaled has participated in WHO workshops focused on analytical procedures for pesticide exposure assessment. His work has resulted in numerous publications in reputable journals, further solidifying his status as an expert in his field. Additionally, he has served on editorial boards for various scientific journals, contributing to the dissemination of knowledge in pesticide chemistry and environmental safety.

Awards and Honors:

Khaled Osman has received multiple prestigious awards recognizing his contributions to agricultural and environmental sciences. In 1996, he was honored with the National Award for Agricultural Sciences and Arts, a testament to his impactful research in pesticide chemistry. Four years later, in 2000, he received the National Award for Environmental Sciences, further highlighting his commitment to addressing environmental issues through scientific inquiry. These accolades not only reflect his dedication to advancing knowledge in pesticide chemistry and toxicology but also underscore the importance of sustainable practices in agriculture. Khaled’s recognition extends beyond national borders, as he is an active member of various professional societies and editorial boards, enhancing his influence in the field. His accolades serve as inspiration for students and colleagues alike, promoting the significance of research that prioritizes public health and environmental protection.

Research Focus:

Khaled Osman’s research focuses on pesticide chemistry, toxicology, and environmental safety, addressing critical issues related to agricultural practices and their impacts on human health and ecosystems. His work encompasses the study of enzyme inhibitory actions, neurotoxicity assessments in workers exposed to pesticides, and the evaluation of the toxicity of metals and pesticides in mammals. Khaled is particularly interested in bioremediation techniques, exploring the use of microorganisms and animal manures to degrade pesticides in contaminated soils. He also conducts studies on monitoring pesticide residues, mycotoxins, and heavy metals in food and soil, emphasizing the need for effective risk assessments. Additionally, his research includes the evaluation of integrated pest management strategies and the role of antioxidants in ameliorating pesticide toxicity. By bridging the gap between science and practical applications, Khaled aims to contribute to safer agricultural practices and improved public health outcomes.

Publication Titles:

  • Monitoring of pesticide residues in vegetables marketed in Al-Qassim region, Saudi Arabia 📊
  • Estimated daily intake of pesticide residues exposure by vegetables grown in greenhouses in Al-Qassim region, Saudi Arabia 🥦
  • Risk assessment of pesticide to human and the environment ⚖️
  • Mineral contents and physicochemical properties of natural honey produced in Al-Qassim region, Saudi Arabia 🍯
  • Toxicity and biochemical impact of certain oxime carbamate pesticides against terrestrial snail, Theba pisana (Müller) 🐌
  • Oxidative stress induced by different pesticides in the land snails, Helix aspersa 🐚
  • Pesticides and human health 🏥
  • Seasonal variations and prevalence of some external parasites affecting freshwater fishes reared at upper Egypt 🐟
  • Safety methods for chlorpyrifos removal from date fruits and its relation with sugars, phenolics and antioxidant capacity of fruits 🍏
  • Biodegradation kinetics of dicofol by selected microorganisms 🌱
  • Bioremediation of oxamyl in sandy soil using animal manures 🐄
  • Phenyl valerate esterases other than neuropathy target esterase and the promotion of organophosphate polyneuropathy 🧬
  • Spatial distribution of pesticide residues in the groundwater of a condensed agricultural area 💧
  • Sulfonyl fluorides and the promotion of diisopropyl fluorophosphate neuropathy ⚗️
  • Remediation of lead and cadmium-contaminated soils 🥇
  • Role of biomarkers in the evaluation of cadmium and ethoprophos combination in male mice 🐁
  • Lindane, chlorpyrifos and paraquat induced oxidative stress in female rats. 🐀
  • Physicochemical and antimicrobial properties of natural honeys produced in Al-Qassim region, Saudi Arabia 🌼
  • Biomonitoring of pesticide contamination from the pesticide industry 🏭
  • Ozone as a safety post-harvest treatment for chlorpyrifos removal from vegetables and its effects on vegetable quality 🍽️

Conclusion:

Khaled Osman is a highly qualified candidate for the Research for Best Researcher Award. His extensive background in pesticide chemistry, teaching excellence, and national recognition highlight his significant contributions to the field. By addressing areas for improvement, particularly in interdisciplinary collaboration and public engagement, he can further enhance the impact of his research. His commitment to advancing knowledge in agricultural and environmental sciences positions him as a leader in his field, making him an exemplary nominee for this prestigious award.

Jasmin Cooper | Environmental Sustainability | Best Researcher Award

Dr Jasmin Cooper | Environmental Sustainability | Best Researcher Award

Dr Jasmin Cooper, Imperial College London, United Kingdom

Dr. Jasmin Cooper, PhD, AMIChemE, is a leading Research Associate at Imperial College London, specializing in emissions inventory analysis and the life cycle sustainability of energy systems. She earned her PhD in Environment and Sustainable Technology from The University of Manchester, where her research assessed the sustainability of shale gas in the UK. Dr. Cooper’s work primarily focuses on evaluating the environmental, economic, and social sustainability of energy systems, including natural gas, hydrogen, and biomethane. She has consulted on multiple projects, offering expertise in emissions quantification, methane leakage analysis, and the techno-economic assessment of low-carbon technologies. With numerous peer-reviewed publications and involvement in high-profile consultancy projects, Dr. Cooper is a prominent figure in the field of sustainable energy systems.

Publication Profile

Google Scholar

Strengths for the Award

Dr. Jasmin Cooper stands out as an ideal candidate for the Best Researcher Award due to her extensive contributions to the fields of emissions inventory analysis, life cycle sustainability of energy systems, and decarbonization. Her research on methane emissions, sustainability assessments of shale gas, and the environmental impact of various energy technologies has not only resulted in high-impact publications but has also provided valuable insights into sustainable energy pathways for the UK. Dr. Cooper’s ability to secure funding, her role as a consultant on multiple high-profile projects, and her interdisciplinary approach make her a strong contender.

Her work, cited by numerous researchers, emphasizes the breadth of her impact. Key projects, such as life cycle assessments for UK industrial decarbonization, further showcase her leadership in advancing sustainable energy solutions. The breadth of her research covers critical areas like hydrogen emissions, negative emission technologies, and methane detection, proving her expertise in reducing environmental impacts.

Areas for Improvement

While Dr. Cooper’s contributions are exceptional, a potential area for growth could be increasing engagement in cross-disciplinary collaborative projects. By expanding the application of her findings in international contexts or other energy sectors, her research’s influence could reach a broader audience. Additionally, greater involvement in public dissemination could enhance the societal understanding and implementation of her findings on sustainability and decarbonization.

Education

Dr. Jasmin Cooper received her PhD in Environment and Sustainable Technology from The University of Manchester (2013–2017), where her research focused on the life cycle sustainability assessment of shale gas in the UK. Her work, funded by the EPSRC and The University of Manchester, examined the environmental, economic, and social implications of shale gas extraction and electricity generation in the UK, comparing its sustainability with other electricity options. Her thesis, titled Life Cycle Sustainability Assessment of Shale Gas in the UK, was supervised by Professor Adisa Azapagic and Dr. Laurence Stamford. Prior to her PhD, Dr. Cooper completed a First Class (Honours) MEng in Chemical Engineering with Environmental Technology (2009–2013) at The University of Manchester. Her undergraduate dissertation explored the swelling behavior of porous polymer adsorbents used for CO₂ capture, further solidifying her expertise in environmental technology and sustainable energy solutions.

Experience

Dr. Jasmin Cooper is currently a Research Associate at the Department of Chemical Engineering, Imperial College London, where she has worked since 2018. Her research focuses on decarbonizing energy systems by analyzing emissions from natural gas, biomethane, hydrogen, and negative emission technologies. Dr. Cooper conducts emission data analysis and life cycle modelling, and she leads projects on the quantification of methane emissions from natural gas supply chains. Her expertise extends to supply chain sustainability, where she assesses the transfer of greenhouse gas emissions across value chains and validates Scope 3 emissions quantification. Dr. Cooper has also worked as a consultant on various high-profile projects, such as methane leakage analysis for Shell and technoeconomic assessments of low-carbon marine fuels for the Royal Academy of Engineering. She has served as an expert witness and third-party reviewer for several consultancy projects and reports, demonstrating her broad expertise in environmental sustainability.

Research Focus

Dr. Jasmin Cooper’s research focuses on the life cycle sustainability of energy systems, with a particular emphasis on emissions analysis and environmental impact assessment. Her work covers natural gas, biomethane, hydrogen, and negative emission technologies, investigating how these energy sources can be used to decarbonize global energy systems. She specializes in the quantification of methane and other short-lived climate pollutants, as well as the technologies used to detect and measure these emissions. Dr. Cooper also explores the sustainability of energy supply chains, assessing how greenhouse gas emissions transfer across value chains and validating Scope 3 emissions data. In addition to this, her research includes the environmental, economic, and social sustainability assessment of shale gas, providing critical insights into its role in energy markets. Overall, her research contributes to understanding how future energy systems can meet global climate goals while minimizing environmental impacts.

Publications Top Notes

  • Shale gas: A review of the economic, environmental, and social sustainability 🛢️🌍💼 – J Cooper, L Stamford, A Azapagic (Energy Technology, 2016)
  • Hydrogen emissions from the hydrogen value chain-emissions profile and impact to global warming 💨⚗️🌍 – J Cooper, L Dubey, S Bakkaloglu, A Hawkes (Science of The Total Environment, 2022)
  • Economic viability of UK shale gas and potential impacts on the energy market up to 2030 💰💡🇬🇧 – J Cooper, L Stamford, A Azapagic (Applied Energy, 2018)
  • Methane emissions along biomethane and biogas supply chains are underestimated ♻️💨🌾 – S Bakkaloglu, J Cooper, A Hawkes (One Earth, 2022)
  • Environmental impacts of shale gas in the UK: Current situation and future scenarios 🛢️🇬🇧🔍 – J Cooper, L Stamford, A Azapagic (Energy Technology, 2014)
  • Natural gas fuel and greenhouse gas emissions in trucks and ships 🚛⛴️🌍 – J Speirs, P Balcombe, J Cooper (Progress in Energy, 2020)
  • The quantification of methane emissions and assessment of emissions data for natural gas supply chains 📊🌿🛢️ – J Cooper, P Balcombe, A Hawkes (Journal of Cleaner Production, 2021)
  • Social sustainability assessment of shale gas in the UK 💼👨‍👩‍👦🇬🇧 – J Cooper, L Stamford, A Azapagic (Sustainable Production and Consumption, 2018)

Conclusion

Dr. Jasmin Cooper’s research achievements, particularly in the sustainable energy sector, underscore her suitability for the Best Researcher Award. Her work addresses critical global challenges in reducing emissions and advancing renewable energy, demonstrating both academic rigor and practical impact. This combination of scholarly influence and societal relevance makes her an exemplary candidate for this prestigious award.

Vijay Sood | Power Electronics Award | Best Researcher Award

Prof Vijay Sood | Power Electronics Award | Best Researcher Award

Prof Vijay Sood , Ontario Tech University, Canada

Dr. Vijay Kumar Sood 🌟 is a highly accomplished Canadian engineer and academic based in Brooklin, Ontario. With a distinguished career spanning academia and industry, he holds a Ph.D. from the University of Bradford, UK, and has been recognized as a Fellow by IEEE, Engineering Institute of Canada, and Canadian Academy of Engineering. Dr. Sood currently serves as an Associate Professor at Ontario Tech University, where he contributes significantly to research and education in power electronics and systems.

Publication Profile

Orcid

Education

Dr. Sood’s academic journey includes a Ph.D. from the University of Bradford, UK, in 1977, an M.Sc. from the University of Strathclyde, UK, in 1969, and a B.Sc. (Hons.) from the University of Nairobi, Kenya, in 1967. He has also pursued additional courses in Project Management, Reliability Centred Maintenance, and various simulation packages.

Experience

Throughout his career, Dr. Sood has held key positions such as Senior Researcher at Hydro-Québec’s Institut de recherche, Adjunct Professor at Concordia University, and Editor for prominent IEEE journals. His roles have included teaching undergraduate and postgraduate courses, conducting extensive research in power systems simulation, and leading numerous projects in HVDC transmission and advanced controls.

Awards and Honors

Dr. Sood’s contributions have earned him prestigious awards including Fellowships from IEEE and the Canadian Academy of Engineering, and recognition from the Engineering Institute of Canada and IEEE Canada. His notable honors include the IEEE Third Millennium Award and the CP Railway Engineering Medal.

Research focus

Dr. Sood’s research focuses on power electronic applications in power systems 🌐, with particular emphasis on HVDC, FACTS, and microgrid technologies. His work integrates advanced simulation studies, neural network applications, and control systems for enhanced grid stability and renewable energy integration.

Markus Miller | Electrical Engineering Award | Best Researcher Award

Mr Markus Miller | Electrical Engineering Award | Best Researcher Award

Mr Markus Miller, Institute of Automation Technology, University of Bremen ,Germany

👨‍🎓 Markus Miller is an accomplished electrical engineer and Ph.D. researcher at the University of Bremen’s Institute of Automation Technology under Prof. Dr. Johanna Myrzik. His work focuses on integrating renewable energy into power grids, developing methodologies for hybrid AC-DC systems. Markus excels in probability and stochastic processes, aiding power grid planning as a tutor for “Stochastic Systems.” Noteworthy achievements include winning the 2016 Bremen Big Data Challenge. His research emphasizes cost-effective, flexible, and resilient grid expansion using AI and optimization techniques. Currently, he explores Smart Power Cells (SPCs) under the DFG SPP 1984 program, addressing challenges in decentralized power systems and Distributed Energy Resources (DERs).

Publication Profile

Orcid

Education

🎓 Markus Miller pursued his academic journey at the University of Bremen, where he earned a Bachelor of Science in Electrical Engineering and Information Technology from 2015 to 2019. Building upon this foundation, he continued to excel, completing his Master of Science in the same field from 2019 to 2021. His education equipped him with profound knowledge in electrical engineering, preparing him for his current role as a Ph.D. researcher specializing in renewable energy integration at the Institute of Automation Technology. Markus’s academic path underscores his dedication to advancing sustainable energy solutions and enhancing power grid efficiency through innovative methodologies and advanced technologies.

Experience

🔋 Markus Miller is currently immersed in pioneering research at the University of Bremen, focusing on integrating renewable energy into power grids. His work centers on developing comprehensive methodologies for planning interconnected hybrid and multimodal AC-DC power systems. As part of the DFG SPP 1984 program’s second phase, Markus explores the pivotal role of Smart Power Cells (SPCs) in decentralized power networks. Leveraging AI and mathematical programming solvers, he optimizes SPC operations and planning, tackling challenges such as Distributed Energy Resources (DERs), power generation uncertainties, and storage system operations. Additionally, Markus imparts his expertise as a tutor for “Stochastic Systems,” enhancing students’ grasp and application of probability and stochastic processes in power grid planning.

 

Research Focus

Markus Miller’s current research focuses on optimizing the allocation of renewable energy systems within weak distribution networks. This work, highlighted in the journal article “Optimal allocation of renewable energy systems in a weak distribution network” published in Electric Power Systems Research, aims to enhance the integration of renewable energy sources into power grids. Collaborating with José Luis Paternina Durán, Sergio F. Contreras, Camilo A. Cortes, and Johanna M.A. Myrzik, Markus addresses critical challenges such as grid stability and efficiency. By employing advanced methodologies and leveraging interdisciplinary insights, his research contributes to sustainable energy solutions that are crucial for meeting future energy demands while minimizing environmental impact.

Publication Top Note

Optimal allocation of renewable energy systems in a weak distribution network

Hossein Khorasanizadeh | Renewable Energy Technologies Award | Excellence in Research

Prof Hossein Khorasanizadeh | Renewable Energy Technologies Award | Excellence in Research

Prof Hossein Khorasanizadeh , University of Kashan , Iran

Professor Hossein Khorasanizadeh is a leading expert in Mechanical Engineering at the University of Kashan, Iran 🏫🇮🇷. He holds a PhD in Mechanical and Manufacturing Engineering from the University of New South Wales 🎓🇦🇺. His research spans solar energy, thermal engineering, fluid mechanics, and nanofluids ☀️🔧🌊. Over his career, he has held various academic and administrative positions, including Head of the Department of Thermal Sciences and Fluid Mechanics. Professor Khorasanizadeh is renowned for his contributions to renewable energy and modern cooling and heating systems, making a significant impact on the engineering community 🌿🌡️.

Publication Profile

Orcid

Education

Professor Hossein Khorasanizadeh has an impressive academic background in Mechanical Engineering. He earned his PhD in Mechanical and Manufacturing Engineering from the University of New South Wales (1993-1997) 🎓🇦🇺. Prior to that, he completed his Master of Engineering Science in Mechanical Engineering at the same university (1992-1993) 📘. His foundational education was at the Isfahan University of Technology, where he obtained his Bachelor of Engineering Science in Mechanical Engineering (1983-1988) 🎓🇮🇷. This solid educational foundation has significantly contributed to his expertise in the field of mechanical engineering and his impactful research.

Agnieszka Pieniążek | Sustainability Award | Best Researcher Award

Dr Agnieszka Pieniążek | Sustainability Award | Best Researcher Award

Dr Agnieszka Pieniążek, Institute of Physics PAS , Poland

Agnieszka Pieniążek 🌟 is an Assistant Professor at the Institute of Physics PAS, Warsaw, Poland. She completed her doctoral studies in Physical Sciences and holds master’s degrees in Analytical Chemistry and Applied Physics from leading Polish universities. Agnieszka’s research focuses on wide bandgap semiconductors, perovskites, and nanostructures, exploring their optical and electronic properties. She has authored 22 SCI and Scopus indexed articles and holds a patent for quantum nanostructures. Recognized for her Outstanding Doctoral Dissertation by the Polish Society for Crystal Growth, she continues to contribute significantly to the field of materials science and semiconductor physics.

 

Publication Profile

Scopus

Education

Agnieszka Pieniążek pursued her academic journey with dedication and achievement. She completed her Doctoral Studies in Physical Sciences at the Institute of Physics PAS, Warsaw, Poland, spanning from October 2013 to June 2019. Prior to that, she earned a Master’s Degree in Analytical Chemistry from Maria Curie-Skłodowska University, Faculty of Chemistry, Lublin, Poland, during October 2008 to July 2013. Her educational foundation also includes a Master’s Degree in Applied Physics from the same university’s Faculty of Mathematics, Physics, and Computer Science, obtained between October 2007 and July 2012. 🎓

Awards

In June 2022, Agnieszka Pieniążek was honored with the Award from the Polish Society for Crystal Growth for her Outstanding Doctoral Dissertation titled “Local Optical Properties of ZnO Microrods Grown by Hydrothermal Method.” This prestigious accolade recognizes her exceptional research contributions in the field of crystal growth and semiconductor optics. Agnieszka’s dissertation delved into the intricate optical characteristics of ZnO microrods, cultivated through innovative hydrothermal techniques. Her work not only expands the understanding of semiconductor materials but also underscores her commitment to advancing scientific knowledge and applications in materials science. 🏆

Research Focus

Agnieszka Pieniążek 🌟 specializes in the research of wide bandgap semiconductors, perovskites, and nanostructures. Her work primarily revolves around investigating the optical and electronic properties of these materials, with a focus on understanding defects, structural dynamics, and their implications for optoelectronic applications. Through her studies, she explores topics such as the bandgap pressure coefficient in perovskite thin films, interdiffusion phenomena in semiconductor alloys, and the cathodoluminescence patterns of semiconductor microrods. Agnieszka’s contributions significantly advance the field of materials science, particularly in enhancing the efficiency and reliability of semiconductor devices for renewable energy and optoelectronics.