Saibo She | Electrical Engineering | Best Researcher Award

Dr Saibo She | Electrical Engineering | Best Researcher Award 

Ph.D Student, University of Manchester, United Kingdom

Saibo She is a dedicated researcher specializing in electromagnetic non-destructive testing and sensor design. Currently pursuing a PhD at the University of Manchester, UK, he previously earned his bachelor’s degree from Hunan University, China. With a strong foundation in electrical engineering, Saibo has actively contributed to various innovative research projects, focusing on defect detection and material evaluation. He is passionate about applying artificial intelligence to enhance diagnostic methodologies. Beyond academia, Saibo has demonstrated leadership in multiple competitions, reflecting his commitment to innovation and collaboration. His work has led to numerous publications and patents, marking him as a rising star in his field.

Profile

Scopus

Strengths for the Award

  1. Extensive Research Experience: Saibo has been involved in numerous significant research programs, focusing on advanced topics in non-destructive testing and electromagnetic evaluation. His work is supported by prestigious funding, such as the National Natural Science Foundation of China.
  2. Innovative Contributions: He has made substantial contributions to the field, as evidenced by multiple patents and published papers in reputable journals like the IEEE Sensors Journal and IEEE Transactions on Instrumentation and Measurement. His research on eddy current sensors demonstrates a blend of innovation and practical application.
  3. Strong Publication Record: Saibo has co-authored several papers with impactful findings, showcasing his ability to engage in high-quality research and contribute to scientific knowledge. His work on defect detection and materials evaluation reflects a commitment to advancing the field.
  4. Awards and Scholarships: His accolades, including the IEEE Instrumentation and Measurement Graduate Fellowship Award and various scholarships, highlight his academic excellence and recognition by peers and institutions.
  5. Leadership Experience: His role as a group leader in several competitions suggests strong leadership and teamwork skills, which are crucial for collaborative research environments.

Areas for Improvement

  1. Broader Impact: While his research is innovative, exploring avenues to increase the practical impact of his work in industrial applications could enhance his profile. Engaging with industry partners for real-world testing and implementation could broaden his research’s reach.
  2. Interdisciplinary Collaboration: Saibo could benefit from engaging with researchers from different fields to foster interdisciplinary collaboration, which can lead to new perspectives and innovative solutions to complex problems.
  3. Communication Skills: While his publication record is strong, focusing on enhancing presentation and outreach skills could help him communicate his research findings more effectively to diverse audiences, including policymakers and industry stakeholders.

Education

Saibo She is currently pursuing a PhD at the University of Manchester, UK, from September 2022 to June 2026. He previously obtained his bachelor’s degree from Hunan University, China, where he studied from September 2019 to June 2022. His education has provided him with a solid foundation in electrical engineering and materials science, equipping him with the knowledge and skills needed for advanced research. At both institutions, Saibo excelled academically, receiving several scholarships and awards that recognized his outstanding performance. His studies have been complemented by hands-on research experiences, enabling him to apply theoretical concepts to practical challenges in non-destructive testing and sensor technology. Saibo’s educational journey reflects a commitment to excellence and a strong desire to contribute to advancements in his field.

Experience 

Saibo She has extensive research experience, starting in July 2019, where he has been involved in multiple significant projects. His work includes analyzing mechanical stress wave mechanisms in silicon carbide power electronic devices and exploring damage mechanisms using nonlinear electromagnetic acoustic emission methods. He has contributed to research funded by the National Natural Science Foundation of China and participated in projects related to non-destructive testing techniques. Saibo’s main responsibilities include the simulation and analysis of electromagnetic fields, the design and evaluation of electromagnetic sensors, and hardware circuit design. He has also constructed experimental platforms for testing and validation purposes. His involvement in these projects showcases his technical expertise and ability to tackle complex engineering problems, making him a valuable asset in the field of non-destructive evaluation.

Awards and Honors 

Saibo She has received numerous awards and honors throughout his academic career. In March 2023, he was awarded the IEEE Instrumentation and Measurement Graduate Fellowship Award. He is a recipient of the China Scholarship Council (CSC) and University of Manchester Joint Scholarship, covering the period from 2022 to 2026. During his time at Hunan University, he received several accolades, including the Graduate Student National Scholarship for two consecutive years (2020-2021 and 2019-2020) and the Academic First-Class Scholarship. Additionally, he was recognized as an Outstanding Graduate Student for the 2019-2020 academic year. His achievements in competitions include the Central China Second Prize in the China Sensor Innovation and Entrepreneurship Competition and multiple awards in electronic design competitions. These recognitions underscore his dedication to research excellence and innovation in engineering.

Research Focus

Saibo She’s research focuses on the design of eddy current array sensors and the evaluation of ferromagnetic materials, particularly through the study of hysteresis loops and Barkhausen magnetic noise. He is keenly interested in defect diagnosis and identification utilizing artificial intelligence algorithms, aiming to enhance the capabilities of non-destructive testing techniques. His work addresses challenges in materials science and engineering, particularly in improving the reliability and efficiency of sensor technologies. By integrating machine learning approaches into traditional testing methods, Saibo seeks to push the boundaries of current evaluation techniques. His research not only contributes to academic knowledge but also has practical implications for industries requiring advanced non-destructive testing solutions. Saibo’s commitment to innovation and his technical expertise position him as a leading researcher in the field, with the potential to significantly advance the understanding and application of electromagnetic testing methods.

Publication Top Notes

  • Flexible Differential Butterfly-Shape Eddy Current Array Sensor for Defect Detection of Screw Thread 📄
  • Flexible Floral Eddy Current Probe for Detecting Flaws in Metal Plate 📄
  • Optimal Design of Remote Field Eddy Current Testing Probe for Ferromagnetic Pipeline Inspection 📄
  • An Innovative Eddy Current Sensor with E-Core Ferrite Resistant to Lift-Off and Tilt Effects 📄
  • Inspection of Defects Depth for Stainless-Steel Sheets Using Four-Coil Excitation Sensor and Deep Learning 📄
  • Evaluation of Defects Depth for Metal Sheets Using Four-Coil Excitation Array Eddy Current Sensor and Improved ResNet18 Network 📄
  • Thickness Measurement and Surface-Defect Detection for Metal Plate Using Pulsed Eddy Current Testing and Optimized Res2Net Network 📄
  • Simultaneous Measurements of Metal Plate Thickness and Defect Depth Using Low Frequency Sweeping Eddy Current Testing 📄
  • Size-Distinguishing Miniature Electromagnetic Tomography Sensor for Small Object Detection 📄
  • Diffusion Velocity of Eddy Current in Metallic Plates Using Point-Tracing Method 📄
  • Temperature Monitoring of Vehicle Brake Drum Based on Dual Light Fusion and Deep Learning 📄

Conclusion

Saibo She is an excellent candidate for the Research for Best Researcher Award due to his impressive research accomplishments, innovative contributions, and strong leadership capabilities. By addressing the areas for improvement, such as expanding the practical impact of his research and enhancing interdisciplinary collaborations, he can further strengthen his profile. His trajectory indicates a promising future in research and innovation, making him a worthy recipient of this award.

 

 

Ahmed Deabs | Mechanical Engineering | Best Researcher Award

Assoc Prof Dr. Ahmed Deabs | Mechanical Engineering | Best Researcher Award

Production Engineering and Mechanical Design, Faculty of Engineering, Shebin Elkom, Menoufia University, Egypt

Ahmed Deabs is a dedicated academic and mechanical engineer with a strong background in production engineering and mechanical design. Currently, he serves as a Lecturer at the Faculty of Engineering, Menofia University, and an Adjunct Lecturer at Delta Technological University, Egypt. Ahmed’s expertise spans across CAD, FEM, machine design, and vibration signal processing, making him a versatile educator and researcher in the field.

Publication Profile

 

Strengths for the Award:

  1. Academic and Teaching Excellence: Ahmed Deabs has a strong academic background with significant teaching experience in various engineering disciplines. His ability to teach over 20 different courses, ranging from “Machine Tool Design” to “Engineering Mechanics,” highlights his versatility and expertise in Production Engineering and Mechanical Design.
  2. Research Contributions: He has several publications in reputable journals and conferences, showcasing his research in areas like CAD, FEM, and parallel robots. His work on topics like “Computer Aided Design of Multi-Stage Gearboxes” and “Optimizing Vertical Pump Reliability” demonstrates his commitment to advancing engineering knowledge.
  3. Industrial and Practical Experience: Ahmed’s involvement in industrial projects, including the design and supervision of mechanical systems like renewable electricity generation systems and industrial production lines, underscores his practical skills and ability to apply research in real-world scenarios.
  4. Technological Proficiency: His proficiency in various engineering and computer tools like SOLIDWORKS, AUTOCAD, MATLAB, and his certifications (e.g., CSWP, CSWA) further bolster his technical capabilities, making him a well-rounded candidate for the award.
  5. Community and Educational Outreach: Ahmed’s initiative in creating and managing free educational resources, including YouTube channels and forums, reflects his dedication to sharing knowledge and supporting the engineering community.

Areas for Improvement:

  1. Research Impact: While Ahmed has a solid number of publications, there could be a focus on increasing the impact and citation of his research. Engaging in more collaborative research projects and targeting high-impact journals could further elevate his academic profile.
  2. International Exposure: Expanding his research collaborations and academic presence internationally could enhance his recognition. Participation in more global conferences and partnerships with international researchers would be beneficial.
  3. Grant Acquisition: Increasing his involvement in competitive research projects and securing grants would demonstrate his capability to lead large-scale research initiatives, further supporting his candidacy for the award.

 

🎓 Education

Ahmed Deabs holds a solid academic foundation in engineering, beginning as a Demonstrator in the Production Engineering and Mechanical Design Department at Menofia University in 2012. He advanced to Assistant Lecturer in 2016 and became a Lecturer in 2022. He also began serving as an Adjunct Lecturer at Delta Technological University in 2023, broadening his teaching experience.

🛠️ Experience

Ahmed has an extensive teaching portfolio, having taught over 20 different courses across various engineering disciplines. His experience includes supervising laboratories, contributing to accreditation projects, and participating in continuous improvement initiatives at Menofia University. His industrial work includes freelance mechanical design and supervising machine fabrication processes for Egyptian and Arabic companies.

🔍 Research Focus

Ahmed’s research interests are diverse, including Computer-Aided Design (CAD), Finite Element Method (FEM), machine design, and parallel robots. He also explores advanced topics like artificial neural networks, deep learning, and vibration signal processing, contributing to the evolution of mechanical engineering.

🏆 Awards and Honors

Ahmed has been recognized for his contributions to engineering education and research, particularly through his involvement in continuous improvement projects and his role in updating laboratory instruments at Menofia University. He also holds several certifications, including SOLIDWORKS and AUTOCAD, reflecting his commitment to professional development.

📄 Publications

“Computer Aided Design of Multi-Stage Gearboxes”International Journal of Advanced Engineering and Global Technology (IJAEGT), Vol. 2, Issue 12, 2014. Cited by 11 articles Link to Publication

“Structural Modifications of 1K62 Engine Lathe Gearbox Casing”International Journal of Advanced Engineering and Global Technology (IJAEGT), Vol. 3, Issue 2, 2015. Cited by 9 articles Link to Publication

“Parallel Robot – Review Article”Journal of Engineering Science and Technology Review, 2021. Cited by 6 articles Link to Publication

“Assessment of Parallel Robot Dynamic Characteristics Using Experimental Modal Analysis and Finite Elements”The First International Conference in Technological University Education and its Role in Industry, Energy and Environmental Conservation (ICCTU 2022), 2022. Cited by 3 articles Link to Publication

Optimizing Vertical Pump Reliability: Investigating Main Shaft Challenges through Integrated Design and Testing StrategiesWater Science, 2024. Cited by 5 articles Link to Publication

 

Conclusion:

Ahmed Deabs is a strong candidate for the Researcher Award, given his extensive academic, research, and industrial contributions. His commitment to education, both in the classroom and through online platforms, alongside his technical expertise, makes him a well-rounded and deserving nominee. Focusing on increasing the impact of his research and expanding his international collaborations could further strengthen his candidacy. Overall, his achievements and contributions make him a suitable contender for the award.

 

 

 

Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto, Robert Bosch GmbH,  Germany

Ralston Pinto, born on October 31, 1994, in India, is a mechanical engineer specializing in modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. Currently pursuing a PhD at RWTH Aachen University in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, he focuses on predicting contact mechanics in manufactured cells. Ralston’s expertise extends to finite element methods, material subroutines, and automation using Python and MATLAB. He has also worked on process influences on sensing elements during his master’s thesis at Bosch and has substantial experience in project management from his tenure at Hamon Group in India. Ralston is driven by the challenge of solving real-time engineering problems and values environments that foster innovative thinking and professional growth.

Publication Profile

Orcid 

Education

Ralston Pinto is currently pursuing his PhD in Mechanical Engineering at RWTH Aachen University, with a project focused on modeling and simulation of SOFC contacts in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich. He holds a Master of Science in Mechanical Engineering from Rheinwaal University of Applied Sciences, where he studied process engineering, materials, and simulation, earning a final grade of 1.8. His master’s thesis focused on understanding process influences on crack failure modes in exhaust gas sensors. Ralston completed his Bachelor of Engineering in Mechanical Engineering from the University of Mumbai, specializing in structural mechanics, fluid mechanics, simulation and CAD, thermodynamics, and process engineering. His bachelor’s thesis involved designing and assembling a pedal-powered water purification vehicle to address water scarcity in rural India.

Experience 

Ralston Pinto is currently engaged in doctoral research at Robert Bosch GmbH in Bamberg, Germany, focusing on the modeling and simulation of SOFC contacts using finite element methods. His work involves investigating the pressures on Solid Oxide Cell contacts and developing material subroutines for anisotropic plasticity. Previously, he completed a master’s thesis at Bosch in Stuttgart, Germany, exploring crack failure modes in exhaust gas sensors. Ralston also interned at Bosch, working on developing protective coatings for sensor elements. His early career includes a position as an Assistant Project Engineer at Hamon Group in Mumbai, India, where he coordinated national-level power sector projects, managed resource allocation, and controlled production processes. His diverse experiences have equipped him with a unique understanding of both project management and hands-on engineering tasks.

Awards and Honors

Ralston Pinto has been recognized for his academic excellence and professional contributions. He received the Deutschland Stipendium from the Bundesministerium für Bildung und Forschung, awarded for his outstanding academic performance at Rheinwaal University of Applied Sciences. This prestigious scholarship is given to students who demonstrate exceptional academic achievements and social commitment. During his tenure at Bosch, Ralston was involved in significant research projects that led to the implementation of his findings in the field. His contributions to the modeling and simulation of SOFC contacts and process influences on sensor failure modes have been well-received in the scientific community. Ralston’s dedication to solving real-world engineering problems and his innovative approach to research have earned him accolades and recognition from both academic and professional circles.

Research Focus 

Ralston Pinto’s research primarily focuses on the modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. His doctoral thesis at RWTH Aachen University, in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, aims to predict the contact mechanics of manufactured cells, incorporating non-ideal aspects like tolerance distributions and uneven profiles. Ralston employs finite element methods, homogenization techniques, and anisotropic plasticity subroutines in his simulations. He also integrates Python and MATLAB for automation and data generation, utilizing machine learning methods for optimization. His master’s research at Bosch involved understanding process influences on crack failure modes in exhaust gas sensors, where he developed experimental methods and analyzed empirical data. Ralston’s broad research interests include computational fluid dynamics (CFD), materials science, process engineering, and the development of innovative solutions for real-world engineering challenges.

Publication Top Notes

A constitutive model for homogenized solid oxide cell contacts with dimensional tolerances

Homogenization of fuel cell interconnects to determine the contacting configuration in a stack

Dawit Alemayehu | Biomechanical Engineering Award | Best Researcher Award

Mr Dawit Alemayehu | Biomechanical Engineering Award | Best Researcher Award

Mr Dawit Alemayehu, Hokkaido university , Japan

Dawit Bogale Alemayehu is a dedicated researcher pursuing his PhD in Biomechanical Design at Hokkaido University, Japan, expected to graduate in September 2024. With an MSc from Addis Ababa University and a BSc from Jimma University, Ethiopia, his research focuses on advanced engineering applications like biomimetic bone structures and energy absorption materials. Dawit has published extensively in international journals and presented his work at prestigious conferences worldwide. His expertise includes CAD modeling, finite element analysis, and experimental validation. Passionate about innovation, Dawit aims to integrate cutting-edge technologies for impactful solutions in biomechanics and materials science.

Publication Profile

Orcid

Education

Dawit Bogale Alemayehu’s academic journey spans across continents and disciplines. He pursued his BSc in Mechanical Engineering at Jimma University, Ethiopia, where he focused on designing thermal systems. His MSc at Addis Ababa University delved into mechanical design, specializing in low carbon steel dynamics. Currently, Dawit is on track to complete his PhD at Hokkaido University, Japan, in Aerospace and Mechanical Engineering. His doctoral research explores cutting-edge biomechanical engineering, aiming to enhance titanium alloys and biomimetic structures for bone and energy absorption applications. Dawit’s academic path reflects a dedication to advancing engineering solutions with global impact.

Professional Experience

Dawit Bogale Alemayehu has accumulated a diverse range of experiences in academia and research. He began his career as a Graduate Assistant and Assistant Lecturer at Bahir Dar University, Ethiopia, where he taught and supported laboratory classes in Mechanical Engineering. Dawit later transitioned to roles as a Lecturer, instructing courses such as Machine Drawing and Strength of Materials. His international experience includes positions as a Research Assistant at National Taiwan University of Science and Technology and National Cheng Kung University in Taiwan, where he contributed to CAD modeling, finite element analysis, and manuscript preparation. Currently, as a PhD Fellow at Hokkaido University, Japan, Dawit conducts cutting-edge research in biomechanical engineering, aiming to publish impactful findings in international journals and present at prestigious conferences.

Research Focus

Dawit Bogale Alemayehu’s research spans several prominent areas in engineering and materials science, focusing extensively on biomechanical and biomimetic engineering. His work explores innovative applications of advanced manufacturing techniques like Fused Filament Fabrication (FFF) to create bioinspired lattice structures for enhanced energy absorption. Additionally, he conducts Finite Element Analysis (FEA) studies to optimize dental implants with biomimetic trabecular bone designs. Alemayehu’s research also delves into improving the biological and mechanical properties of materials such as pure titanium through processes like Equal Channel Angular Pressing (ECAP) and Micro-Arc Oxidation. His contributions emphasize the intersection of engineering innovation and biomedical applications, aiming to advance both theoretical understanding and practical applications in these fields. 🌟

Publication Top Notes