Birgitte Ahring | Engineering and Technology | Best Researcher Award

Prof. Birgitte Ahring | Engineering and Technology | Best Researcher Award

Professor ,Washington State University ,United States

Dr. Birgitte Kiær Ahring is a distinguished global expert in biofuels, renewable energy, and clean technologies. Currently a Professor at Washington State University (WSU) and Head of the BioScience & Technology Group at the Bioproducts, Science & Engineering Laboratory (BSEL), she has led pioneering research in cellulosic ethanol, biogas, and renewable natural gas. With a career spanning decades, she has held prominent roles across academia, industry, and policy—including as founder of BioGasol Aps and advisor to international organizations such as the UNDP and World Bank. Dr. Ahring’s leadership in Denmark and the U.S. has driven the advancement of sustainable energy systems globally. Her commitment to translating science into practice has earned her numerous accolades, including Washington State’s Research Excellence Award and a gubernatorial honor as “Washingtonian for the Day.” With over 555 scientific contributions and 11 patents, she remains a driving force in the bioeconomy and environmental innovation.

Professional Profile

orcid

🎓 Education

Dr. Birgitte Kiær Ahring holds a Ph.D. in a life sciences field related to biotechnology or bioengineering, though her exact alma mater and thesis details are not listed. Her academic trajectory is rooted in biotechnology and chemical/biological engineering, fields that underpin her extensive contributions to renewable energy and clean technologies. Her foundational education laid the groundwork for a multifaceted career that bridges science, engineering, policy, and industrial application. She has also been involved in academic leadership and curriculum development through professorships at institutions such as the Technical University of Denmark (DTU), University of California, Los Angeles (UCLA), and Washington State University. Her interdisciplinary background and international engagements—ranging from Denmark to the U.S., and from Africa to Asia—reflect a rich academic foundation and lifelong commitment to sustainable energy research and education.

💼 Experience

Dr. Ahring’s professional journey reflects over three decades of leadership in biotechnology and renewable energy. Since 2008, she has served as Professor at WSU and previously directed the BSEL, where she established state-of-the-art research facilities. She founded and led BioGasol Aps and was CEO of the Maxifuel Pilot Plant in Denmark. From 2002–2008, she led the Danish Centre for Biofuels and BST division at DTU. At UCLA, she served as Professor of Civil & Environmental Engineering. Her governmental and advisory roles include being a Board Member of Energinet.dk and a consultant to USDA and multiple UN agencies. She has contributed to renewable energy implementation across Latin America, Africa, and Asia. She continues to advise research campaigns and editorial boards internationally. Through this experience, she has merged policy, practice, and research into a cohesive and influential professional impact.

🏆 Awards and Honors

Prof. Birgitte Ahring has earned numerous prestigious awards that honor her transformative research and global influence in bioengineering. In 2008, she received the Washington State Star Researcher Award valued at $2.5 million for excellence in renewable energy innovation. In 2021, she was recognized with the WSU Chancellor’s Distinguished Research Excellence Award. She was named “Washingtonian for the Day” by Governor Jay Inslee in 2022, acknowledging her service to the state’s clean energy transition. In 2023, she received the Anjan Boise Outstanding Research Award, and in 2024, she earned WSU’s Research Excellence Award. These accolades reflect her leadership in scientific discovery, commercialization, and sustainability-focused innovation. Additionally, her numerous editorial and board appointments in academia and industry further affirm her authority in the global bioeconomy and her role as a mentor and policy influencer.

🔍 Research Focus

Prof. Ahring’s research centers on clean technology for biofuels, biochemicals, and renewable natural gas (RNG). She is a world leader in cellulosic ethanol production, thermophilic anaerobic digestion, and advanced wet oxidation (AWOEx) pretreatment technologies. Her work explores the decarbonization of energy systems through biological and chemical conversion of lignocellulosic biomass, waste feedstocks, and CO₂ into fuels and valuable bio-products. She is especially focused on microbial consortia engineering and syngas fermentation to develop sustainable aviation fuel (SAF) and medium-chain volatile fatty acids. She has significantly advanced microbial hydrogen kinetics and homoacetogenesis, aiming to optimize the energy yields and carbon efficiencies in bioreactors. Her integrated approach—spanning lab research, pilot plants, and industrial applications—bridges science, engineering, and policy. Through over 555 publications and collaborative global research, Prof. Ahring is reshaping bioresource technology and offering scalable solutions for climate-resilient energy systems.

📚 Publication Top Notes

 Membrane Technologies for Separating Volatile Fatty Acids Produced Through Arrested Anaerobic Digestion: A Review

  • Journal: Clean Technologies, June 2025

  • Authors: Angana Chaudhuri, Budi Mandra Harahap, Birgitte K. Ahring

  • Summary:
    This review explores state-of-the-art membrane-based separation technologies for volatile fatty acids (VFAs) derived from arrested anaerobic digestion. It emphasizes operational efficiency, selectivity, and integration potential in biorefineries, highlighting nanofiltration, pervaporation, and forward osmosis as promising routes for sustainable VFA recovery.

Advancing Thermophilic Anaerobic Digestion of Corn Whole Stillage: Lignocellulose Decomposition and Microbial Community Characterization

  • Journal: Fermentation, June 2024

  • Authors: Alnour Bokhary, Fuad Ale, Richard Garrison, Birgitte K. Ahring

  • Summary:
    The study investigates thermophilic anaerobic digestion (AD) of corn whole stillage, focusing on lignocellulosic breakdown and microbial dynamics. It reveals enhanced methane yield and stable digestion due to synergistic microbial interactions, underlining the importance of community structure in optimizing AD processes.

 Acetate Production by Moorella thermoacetica via Syngas Fermentation: Effect of Yeast Extract and Syngas Composition

  • Journal: Fermentation, September 2023

  • Authors: Budi Mandra Harahap, Birgitte K. Ahring

  • Summary:
    This paper examines acetate production from syngas using Moorella thermoacetica. It discusses how varying yeast extract concentrations and syngas composition affect yields, emphasizing the role of nutrient balance and gas ratios in optimizing microbial fermentation for bio-based acetic acid.

 Enhancing Acetic Acid Production in In Vitro Rumen Cultures by Addition of a Homoacetogenic Consortia from a Kangaroo

  • Journal: Fermentation, September 2023

  • Authors: Renan Stefanini Lopes, Birgitte K. Ahring

  • Summary:
    Innovative research demonstrating the enhancement of acetic acid production in rumen cultures by adding kangaroo-derived homoacetogens. The study also investigates methanogen inhibition and almond biochar’s role in altering fermentation profiles, suggesting applications in livestock and bioenergy.

 Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review

  • Journal: Microorganisms, April 2023

  • Authors: Budi Mandra Harahap, Birgitte K. Ahring

  • Summary:
    This comprehensive review analyzes the full cycle of acetate production from biomass-derived syngas. It discusses gasification parameters, microbial strain selection, and bioreactor design, proposing integrated systems for sustainable acetate generation from lignocellulosic residues.

Conclusion

Engineering Award, Technology Award, Best Engineering Award, Global Technology Award, Engineering Innovation Award, Technology Excellence Award, Emerging Engineer Award, Tech Pioneer Award, Digital Engineering Award, STEM Innovation Award, Engineering and Technology Recognition, Academic Technology Award, Young Engineer Award, Women in Engineering Award, Smart Tech Award, Mechanical Engineering Award, Electrical Engineering Award, Civil Engineering Award, Software Engineering Award, Engineering Leadership Award, AI Technology Award, Robotics Award, Engineering Design Award, Sustainable Engineering Award, Innovative Engineer Award, Best Technologist Award, Engineering R&D Award, Engineering Educator Award, Future Tech Award, Engineering Breakthrough Award, Global Engineering Talent Award, Tech Achievement Award, Industry Technology Award, Next Gen Engineering Award, Excellence in Technology Award, Engineering Startup Award, Engineering Invention Award, Engineering Visionary Award, Lifetime Achievement in Engineering Award, Engineering and Technology Research Award

 

Meng Duan | Engineering and Technology | Best Researcher Award

Dr. Meng Duan | Engineering and Technology | Best Researcher Award

Engineer, Water Resources Research Institute of Inner Mongolia Autonomous Region, China

Meng Duan is a dedicated engineer and researcher in the field of agricultural water resource management, currently working at the Water Resources Research Institute of Inner Mongolia Autonomous Region. He earned his Ph.D. in Water Conservancy Engineering from China Agricultural University and has since made significant contributions to the study of evapotranspiration, water-carbon flux, and crop growth modeling. His research efforts have directly influenced water-saving irrigation strategies and sustainable agriculture in arid regions of China. With funding from the National Natural Science Foundation of China (NSFC) and collaborations with top institutions, Duan’s work bridges scientific innovation and field application. He has published widely in SCI-indexed journals, authored a highly regarded monograph, and holds a national patent related to crop canopy structure modeling. Recognized as an NSFC Excellent Young Scholar, Meng Duan continues to advance integrated water and agricultural solutions for regional and national impact.

Profile

Orcid

Education

Meng Duan received his doctoral degree (Ph.D.) in Water Conservancy Engineering from China Agricultural University, one of China’s premier agricultural and environmental research institutions. His doctoral studies focused on integrated water resource management and crop modeling, particularly in arid and semi-arid regions. During his academic journey, he conducted extensive research in the Heihe River Basin—a critical area for understanding water transformation and oasis agriculture. His thesis emphasized multi-process coupling mechanisms within soil-plant-atmosphere systems. He complemented his formal education with practical research experiences in national labs and collaborated with experts from the National Key Laboratory of Watershed Water Cycle Simulation. His strong academic foundation laid the groundwork for his future roles in applied water resource engineering, interdisciplinary modeling, and sustainable irrigation systems. With robust training in both theoretical frameworks and computational modeling techniques, Duan emerged from his education well-prepared to tackle complex hydrological and agricultural challenges.

Professional Experience 

Meng Duan currently serves as an Engineer at the Water Resources Research Institute of Inner Mongolia Autonomous Region. In this capacity, he has designed and implemented advanced models for evapotranspiration estimation, crop growth behavior, and water-carbon flux quantification. His professional track record includes leadership in several prestigious national-level research projects funded by the NSFC and the National Key Laboratory. Between 2015 and 2025, Duan contributed to over six major multi-year research programs, including work on scalable evapotranspiration models and the development of efficient irrigation systems tailored to China’s arid agricultural zones. Beyond research, he has played a crucial role in policy consultation for water use regulation and agronomic strategy optimization in Inner Mongolia. His technical contributions span data simulation, system integration, and predictive analytics for agricultural productivity. Through collaboration with cross-disciplinary teams and institutions, Duan has gained a reputation as a practical and visionary water resource engineer.

Research Focus 

Meng Duan’s research is centered on sustainable agricultural water management in arid and semi-arid regions. He specializes in evapotranspiration modeling, water-carbon flux analysis, and crop growth simulation. His work bridges the theoretical and practical realms by developing tools and methods that improve irrigation efficiency and crop productivity. A major focus of his research is understanding the dynamic interactions between soil, mulch, plant, and atmospheric systems, especially under water-stressed conditions. He has developed innovative models to link canopy structure with radiation efficiency, significantly boosting maize yields and optimizing water use. With NSFC-funded support, Duan’s research has resulted in tangible irrigation strategies that reduce water usage by up to 25% in Inner Mongolia. He continues to explore how remote sensing, environmental physics, and data-driven modeling can synergize to support food security and ecological resilience in vulnerable agricultural zones.

Publication Top Notes

  1. Meng Duan, Baozhong Zhang. (2025).
    Title: Modeling the Impact of Canopy Structure on Crop Water Use Efficiency in Arid Zones
    Journal: Agronomy
    Indexing: SCI, IF = 3.7, CAS II
    Summary: This study explores how variations in canopy structure affect evapotranspiration and crop yield, providing a model for improving irrigation practices in drylands.

Conclusion:

 Meng Duan stands out as a highly competent and impactful early-career researcher, especially in the specialized field of agricultural water resources engineering. His research contributes significantly to sustainable water   management, food security, and agro-ecological modeling in arid regions of China.

Alia Al-Ghosoun | Engineering and Technology | Best Researcher Award

Dr Alia Al-Ghosoun | Engineering and Technology | Best Researcher Award

Assistant professor, Philadephia University, Jordan

Dr. Alia Radwan Al-Ghosoun is an Assistant Professor in the Mechatronics Engineering Department at Philadelphia University, Jordan. With a deep passion for advanced engineering research, she holds a DPhil in Engineering from Durham University, UK, where her work focused on shallow water dynamics and adaptive control methods for hydrodynamic systems. Dr. Al-Ghosoun’s research spans fluid mechanics, computational modeling, and the application of artificial intelligence in engineering problems. She has worked as a post-doctoral researcher at Durham University and has held multiple academic positions at the University of Jordan, where she contributed to the development of energy-efficient systems and intelligent control techniques. Dr. Al-Ghosoun’s commitment to advancing knowledge in hydrodynamics and environmental modeling has resulted in impactful publications and contributions to numerical simulation and uncertainty quantification. She is passionate about improving the practical application of engineering solutions for environmental challenges.

Profile

Scopus

Strengths for the Award

  1. Advanced Academic Background:
    • Dr. Al-Ghosoun holds a Doctor of Philosophy in Engineering from Durham University, UK, where her research focused on shallow water flow dynamics and adaptive control techniques to improve the accuracy of these systems. This is a highly specialized field with significant implications in environmental modeling, water systems, and engineering, marking her as an expert in computational engineering and fluid dynamics.
    • Her post-doctoral research at Durham University further solidifies her expertise, particularly in understanding and quantifying uncertainty in numerical modeling of hydrodynamics, which is crucial for predicting real-world environmental phenomena.
  2. Impactful and Diverse Research Contributions:
    • Dr. Al-Ghosoun has published several peer-reviewed papers in high-impact journals such as Environmental Modelling and Software, Communications in Computational Physics, and International Journal of Computational Methods. These works cover areas such as uncertainty quantification, morphodynamics, and numerical simulation of shallow water flows and hydrosediment processes.
    • Her conference papers and book chapters demonstrate a commitment to advancing computational methods in hydrodynamics and environmental modeling, particularly addressing the challenges of bed topography deformation, fluid-structure interactions, and stress analysis in hydro-sediment systems.
  3. Interdisciplinary Research:
    • Dr. Al-Ghosoun’s research stands at the intersection of mechatronics, engineering, and environmental sciences, with a focus on adaptive control techniques and artificial intelligence. This interdisciplinary approach is essential in addressing complex real-world problems related to fluid dynamics and energy systems.
    • The integration of AI techniques (such as genetic algorithms) in energy consumption optimization and shallow water flow models highlights her innovative approach to solving large-scale engineering problems.
  4. Global Collaboration and Recognition:
    • With international experience as a Post-Doctoral Researcher at Durham University and several collaborative research efforts with Jordanian and UK-based academic institutions, Dr. Al-Ghosoun has developed a robust international network. Her involvement in global research platforms, such as ResearchGate, attests to her active engagement in the academic community and dissemination of her work.
  5. Teaching and Mentoring Experience:
    • Dr. Al-Ghosoun has demonstrated a strong commitment to education as an Assistant Professor at Philadelphia University, where she contributes to the development of young engineers in Mechatronics Engineering. Her role as a Teaching Assistant and Research Assistant at various institutions indicates her foundational experience in nurturing future engineers and scientists.
  6. Recognition of Research Excellence:
    • Dr. Al-Ghosoun’s papers, particularly her works on uncertainty quantification and modeling techniques for shallow water systems, have gained traction in the academic community. For instance, her work published in Environmental Modelling and Software (2021) has already accumulated 10 citations, signaling its importance in the field.

Areas for Improvement

  1. Broader Citation Impact:
    • While Dr. Al-Ghosoun’s work is highly specialized and impactful, the citation counts for some of her research papers remain low (e.g., her paper on stress analysis has 0 citations). Increasing visibility in wider journals and collaborating with researchers in complementary fields could enhance the reach and impact of her publications.
  2. Increased Public Engagement:
    • Engaging in public outreach or community-based projects that demonstrate the application of her research (e.g., how adaptive control methods improve water management or energy efficiency in real-world scenarios) could enhance the broader social impact of her work.
  3. Further Collaborative Interdisciplinary Projects:
    • Although her work spans several fields, further involvement in cross-disciplinary projects—especially those integrating sustainable engineering and climate resilience—could increase the relevance of her research to pressing global challenges, like climate change adaptation and sustainable resource management.

Education

Dr. Alia Radwan Al-Ghosoun earned her Doctor of Philosophy (DPhil) in Engineering from Durham University, UK in January 2021. Her doctoral research focused on understanding the effects of bathymetric movement on shallow water flows and their interaction with the seabed, leading to the development of adaptive control methods for improved accuracy in hydrodynamic simulations. Prior to this, she completed a Post-Doctorate at Durham University in 2022, where she explored the application of uncertainty quantification in complex engineering models. Dr. Al-Ghosoun holds a Master’s Degree in Mechanical Engineering from the University of Jordan, where she developed AI-based predictive models for fuel consumption in Jordan and optimized energy efficiency through genetic algorithms. She also earned her Bachelor’s degree in Mechatronics Engineering from the University of Jordan. Dr. Al-Ghosoun’s academic background equips her with interdisciplinary expertise in engineering and environmental science.

Experience

Dr. Alia Radwan Al-Ghosoun is currently an Assistant Professor at Philadelphia University in the Mechatronics Engineering Department since October 2022, where she teaches and conducts research in engineering systems and adaptive control techniques. Prior to this, she was a Post-Doctoral Researcher at Durham University, UK (2021-2022), focusing on uncertainty quantification in shallow water systems. Dr. Al-Ghosoun completed her DPhil at Durham University (2016-2021), where her research involved modeling shallow water flows and the interaction of bed topography. She has also held roles as a Research Assistant at the University of Jordan’s Water, Energy, and Environment Center (2012-2016) and the King Abdullah Design and Development Bureau (KADDB) (2012). Earlier in her career, she worked as a Teaching Assistant in both Mechatronics and Mechanical Engineering departments at the University of Jordan. Dr. Al-Ghosoun’s interdisciplinary experience blends academia with applied engineering solutions.

Awards and Honors

Dr. Alia Radwan Al-Ghosoun has been recognized for her research excellence and commitment to advancing knowledge in hydrodynamics and adaptive control systems. Her academic achievements are highlighted by her work at Durham University, where she earned a prestigious Doctoral Fellowship for her research on shallow water dynamics and bed interaction. She has also received recognition for her post-doctoral research contributions in uncertainty quantification and numerical simulations. Dr. Al-Ghosoun’s work has been presented at major academic conferences, and she has contributed to a variety of high-impact journal publications. In addition to her research accomplishments, she has been awarded teaching grants to support her role as an educator at Philadelphia University, where she mentors the next generation of Mechatronics engineers. Her consistent efforts to bridge the gap between theoretical research and practical engineering applications have earned her widespread recognition within her academic and professional communities.

Research Focus

Dr. Alia Radwan Al-Ghosoun specializes in hydrodynamic modeling, shallow water flows, and the application of adaptive control systems to improve the accuracy of complex environmental simulations. Her research interests focus on uncertainty quantification and the development of computational models for the numerical simulation of fluid dynamics, particularly in the context of stochastic bed topography and morphodynamics. She has worked extensively on shallow water waves, bathymetric effects, and water-bed interaction. One of her core research goals is to enhance the predictive accuracy of models used for environmental management and engineering systems by incorporating artificial intelligence techniques, such as genetic algorithms and surrogate models. Dr. Al-Ghosoun is passionate about integrating AI-based solutions into environmental and energy systems to address challenges like resource optimization, pollution reduction, and sustainable energy. Her work in hydro-sediment-morphodynamics provides valuable insights into climate change adaptation and water resource management.

Publication Top Notes

  1. Uncertainty quantification for stochastic morphodynamics 🌊🧑‍🔬, AIP Conference Proceedings, 2024.
  2. A Novel Computational Approach for Wind-Driven Flows over Deformable Topography 💨🌍, Lecture Notes in Computer Science, 2024.
  3. A Nonintrusive Reduced-Order Model for Uncertainty Quantification in Numerical Solution of One-Dimensional Free-Surface Water Flows Over Stochastic Beds 📊💧, International Journal of Computational Methods, 2022.
  4. Efficient Computational Algorithm for Stress Analysis in Hydro-Sediment-Morphodynamic Models 💻⚙️, Lecture Notes in Computer Science, 2022.
  5. A surrogate model for efficient quantification of uncertainties in multilayer shallow water flows 🌊🔬, Environmental Modelling and Software, 2021.
  6. A computational model for simulation of shallow water waves by elastic deformations in the topography 🌊⚡, Communications in Computational Physics, 2021.
  7. Uncertainty Quantification of Bathymetric Effects in a Two-Layer Shallow Water Model: Case of the Gibraltar Strait 🏝️🌊, Springer Water, 2020.
  8. A hybrid finite volume/finite element method for shallow water waves by static deformation on seabeds 🌊🧮, Engineering Computations, 2020.
  9. A new numerical treatment of moving wet/dry fronts in dam-break flows 💧🚨, Journal of Applied Mathematics and Computing, 2019.

Conclusion

Dr. Alia Radwan Al-Ghosoun is an exceptional candidate for the Best Researcher Award. Her contributions to the fields of hydrodynamics, uncertainty quantification, and adaptive control systems are not only advancing the understanding of complex environmental processes but are also pioneering new computational techniques that can improve the accuracy and efficiency of engineering systems. Her ability to merge artificial intelligence with environmental modeling positions her as a leader in the field. Her ongoing efforts in teaching, mentoring, and global academic collaborations further highlight her potential to shape the future of engineering and environmental sciences. With a few strategic steps to broaden her citation impact and public visibility, Dr. Al-Ghosoun could solidify her place as a thought leader in her field.

Saibo She | Electrical Engineering | Best Researcher Award

Dr Saibo She | Electrical Engineering | Best Researcher Award 

Ph.D Student, University of Manchester, United Kingdom

Saibo She is a dedicated researcher specializing in electromagnetic non-destructive testing and sensor design. Currently pursuing a PhD at the University of Manchester, UK, he previously earned his bachelor’s degree from Hunan University, China. With a strong foundation in electrical engineering, Saibo has actively contributed to various innovative research projects, focusing on defect detection and material evaluation. He is passionate about applying artificial intelligence to enhance diagnostic methodologies. Beyond academia, Saibo has demonstrated leadership in multiple competitions, reflecting his commitment to innovation and collaboration. His work has led to numerous publications and patents, marking him as a rising star in his field.

Profile

Scopus

Strengths for the Award

  1. Extensive Research Experience: Saibo has been involved in numerous significant research programs, focusing on advanced topics in non-destructive testing and electromagnetic evaluation. His work is supported by prestigious funding, such as the National Natural Science Foundation of China.
  2. Innovative Contributions: He has made substantial contributions to the field, as evidenced by multiple patents and published papers in reputable journals like the IEEE Sensors Journal and IEEE Transactions on Instrumentation and Measurement. His research on eddy current sensors demonstrates a blend of innovation and practical application.
  3. Strong Publication Record: Saibo has co-authored several papers with impactful findings, showcasing his ability to engage in high-quality research and contribute to scientific knowledge. His work on defect detection and materials evaluation reflects a commitment to advancing the field.
  4. Awards and Scholarships: His accolades, including the IEEE Instrumentation and Measurement Graduate Fellowship Award and various scholarships, highlight his academic excellence and recognition by peers and institutions.
  5. Leadership Experience: His role as a group leader in several competitions suggests strong leadership and teamwork skills, which are crucial for collaborative research environments.

Areas for Improvement

  1. Broader Impact: While his research is innovative, exploring avenues to increase the practical impact of his work in industrial applications could enhance his profile. Engaging with industry partners for real-world testing and implementation could broaden his research’s reach.
  2. Interdisciplinary Collaboration: Saibo could benefit from engaging with researchers from different fields to foster interdisciplinary collaboration, which can lead to new perspectives and innovative solutions to complex problems.
  3. Communication Skills: While his publication record is strong, focusing on enhancing presentation and outreach skills could help him communicate his research findings more effectively to diverse audiences, including policymakers and industry stakeholders.

Education

Saibo She is currently pursuing a PhD at the University of Manchester, UK, from September 2022 to June 2026. He previously obtained his bachelor’s degree from Hunan University, China, where he studied from September 2019 to June 2022. His education has provided him with a solid foundation in electrical engineering and materials science, equipping him with the knowledge and skills needed for advanced research. At both institutions, Saibo excelled academically, receiving several scholarships and awards that recognized his outstanding performance. His studies have been complemented by hands-on research experiences, enabling him to apply theoretical concepts to practical challenges in non-destructive testing and sensor technology. Saibo’s educational journey reflects a commitment to excellence and a strong desire to contribute to advancements in his field.

Experience 

Saibo She has extensive research experience, starting in July 2019, where he has been involved in multiple significant projects. His work includes analyzing mechanical stress wave mechanisms in silicon carbide power electronic devices and exploring damage mechanisms using nonlinear electromagnetic acoustic emission methods. He has contributed to research funded by the National Natural Science Foundation of China and participated in projects related to non-destructive testing techniques. Saibo’s main responsibilities include the simulation and analysis of electromagnetic fields, the design and evaluation of electromagnetic sensors, and hardware circuit design. He has also constructed experimental platforms for testing and validation purposes. His involvement in these projects showcases his technical expertise and ability to tackle complex engineering problems, making him a valuable asset in the field of non-destructive evaluation.

Awards and Honors 

Saibo She has received numerous awards and honors throughout his academic career. In March 2023, he was awarded the IEEE Instrumentation and Measurement Graduate Fellowship Award. He is a recipient of the China Scholarship Council (CSC) and University of Manchester Joint Scholarship, covering the period from 2022 to 2026. During his time at Hunan University, he received several accolades, including the Graduate Student National Scholarship for two consecutive years (2020-2021 and 2019-2020) and the Academic First-Class Scholarship. Additionally, he was recognized as an Outstanding Graduate Student for the 2019-2020 academic year. His achievements in competitions include the Central China Second Prize in the China Sensor Innovation and Entrepreneurship Competition and multiple awards in electronic design competitions. These recognitions underscore his dedication to research excellence and innovation in engineering.

Research Focus

Saibo She’s research focuses on the design of eddy current array sensors and the evaluation of ferromagnetic materials, particularly through the study of hysteresis loops and Barkhausen magnetic noise. He is keenly interested in defect diagnosis and identification utilizing artificial intelligence algorithms, aiming to enhance the capabilities of non-destructive testing techniques. His work addresses challenges in materials science and engineering, particularly in improving the reliability and efficiency of sensor technologies. By integrating machine learning approaches into traditional testing methods, Saibo seeks to push the boundaries of current evaluation techniques. His research not only contributes to academic knowledge but also has practical implications for industries requiring advanced non-destructive testing solutions. Saibo’s commitment to innovation and his technical expertise position him as a leading researcher in the field, with the potential to significantly advance the understanding and application of electromagnetic testing methods.

Publication Top Notes

  • Flexible Differential Butterfly-Shape Eddy Current Array Sensor for Defect Detection of Screw Thread 📄
  • Flexible Floral Eddy Current Probe for Detecting Flaws in Metal Plate 📄
  • Optimal Design of Remote Field Eddy Current Testing Probe for Ferromagnetic Pipeline Inspection 📄
  • An Innovative Eddy Current Sensor with E-Core Ferrite Resistant to Lift-Off and Tilt Effects 📄
  • Inspection of Defects Depth for Stainless-Steel Sheets Using Four-Coil Excitation Sensor and Deep Learning 📄
  • Evaluation of Defects Depth for Metal Sheets Using Four-Coil Excitation Array Eddy Current Sensor and Improved ResNet18 Network 📄
  • Thickness Measurement and Surface-Defect Detection for Metal Plate Using Pulsed Eddy Current Testing and Optimized Res2Net Network 📄
  • Simultaneous Measurements of Metal Plate Thickness and Defect Depth Using Low Frequency Sweeping Eddy Current Testing 📄
  • Size-Distinguishing Miniature Electromagnetic Tomography Sensor for Small Object Detection 📄
  • Diffusion Velocity of Eddy Current in Metallic Plates Using Point-Tracing Method 📄
  • Temperature Monitoring of Vehicle Brake Drum Based on Dual Light Fusion and Deep Learning 📄

Conclusion

Saibo She is an excellent candidate for the Research for Best Researcher Award due to his impressive research accomplishments, innovative contributions, and strong leadership capabilities. By addressing the areas for improvement, such as expanding the practical impact of his research and enhancing interdisciplinary collaborations, he can further strengthen his profile. His trajectory indicates a promising future in research and innovation, making him a worthy recipient of this award.

 

 

Sanyogita Manu | Engineering and Technology | Best Researcher Award

Ms. Sanyogita Manu | Engineering and Technology | Best Researcher Award

PhD Candidate, The University of British Columbia, Canada

Publication Profile

Google scholar

Strengths for the Award

  1. Innovative Research Focus: Sanyogita’s work addresses a significant issue—indoor environmental quality during a time when many transitioned to remote work due to the pandemic. Her systematic study has the potential to inform guidelines and policies related to home office setups, highlighting its relevance in current public health discussions.
  2. Methodological Rigor: The research employs a robust methodology, utilizing continuous monitoring of various IEQ parameters alongside subjective assessments from participants. This comprehensive approach enhances the reliability of her findings.
  3. Professional Affiliations and Contributions: Sanyogita is actively engaged in professional organizations related to her field, serving on committees and reviewing journals. Her involvement in international conferences signifies her commitment to advancing research in IEQ and energy-efficient design.
  4. Publication Record: With multiple peer-reviewed publications and conference proceedings, Sanyogita demonstrates a solid track record in disseminating her research findings, contributing to the academic community’s understanding of indoor environments.
  5. Awards and Recognition: Her prior achievements and recognitions, including scholarships and awards, underscore her dedication and excellence in research.

Areas for Improvement

  1. Broader Impact Assessment: While her research is focused on WFH settings, there may be an opportunity to expand her study to include diverse populations and different geographical locations to enhance the generalizability of her findings.
  2. Interdisciplinary Collaboration: Collaborating with professionals from related fields such as psychology, sociology, or occupational health could enrich her research and offer a more holistic understanding of the WFH experience.
  3. Public Engagement: Engaging in public outreach or workshops to share her findings with broader audiences, including policymakers and the general public, could enhance the impact of her work and foster practical applications of her research.

Education

Sanyogita holds a Master’s degree in Interior Architecture and Design, specializing in Energy and Sustainability from CEPT University, India, where her dissertation focused on optimizing window performance in commercial buildings. She also earned her Bachelor’s degree in Interior Design from the same institution, with a dissertation exploring the thermal effects of furniture in interior environments. 🎓

Experience

With extensive experience in academia and research, Sanyogita has contributed to various projects assessing indoor environmental conditions and energy efficiency in buildings. She has served on several scientific committees and has been actively involved in peer review for reputable journals, reflecting her expertise in the field. 🏢

Research Focus

Her research primarily focuses on indoor environmental quality (IEQ) and its impact on occupant well-being and productivity, particularly in work-from-home settings. Sanyogita employs a systematic approach to evaluate both perceived and observed IEQ, utilizing a variety of environmental monitoring tools. 🔍

Awards and Honours

Sanyogita is a member of multiple prestigious organizations, including the International Society of Indoor Air Quality and Climate (ISIAQ) and the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). She has been recognized for her contributions to building performance simulation and energy conservation, reflecting her commitment to sustainable practices. 🏆

Publication Top Notes

Manu, S., & Rysanek, A. (under review). A novel dataset of indoor environmental conditions in work-from-home settings. Building and Environment.

Manu, S., & Rysanek, A. (2024). A Co-Location Study of 87 Low-Cost Environmental Monitors: Assessing Outliers, Variability, and Uncertainty. Buildings, 14(9), Article 9. Link

Manu, S., et al. (2024). A state-of-the-art, systematic review of indoor environmental quality studies in work-from-home settings. Building and Environment, 111652. Link

Doctor-Pingel, M., et al. (2019). A study of indoor thermal parameters for naturally ventilated occupied buildings in the warm-humid climate of southern India. Building and Environment, 151, 1-14. Link

Manu, S., et al. (2019). Performance evaluation of climate responsive buildings in India – Case studies from cooling dominated climate zones. Building and Environment, 148, 136-156. Link

Gupta, R., et al. (2019). Customized performance evaluation approach for Indian green buildings. Building Research & Information, 47(1), 56–74. Link

Conclusion

Sanyogita Manu’s research on indoor environmental quality in work-from-home settings is both timely and significant. Her methodological rigor, publication record, and active participation in professional communities demonstrate her dedication to advancing knowledge in her field. While there are areas for improvement, her strengths strongly position her as a worthy candidate for the Best Researcher Award. Her work has the potential to influence policy and improve well-being in residential work environments, making her contributions invaluable in today’s context.