Samaneh Abdi Qezeljeh | Energy and Sustainability | Best Researcher Award

Ms. Samaneh Abdi Qezeljeh | Energy and Sustainability | Best Researcher Award

PhD Researcher, Technische Universität Darmstadt, FG SLA, Germany

Samaneh Abdi Qezeljeh is a passionate researcher in the field of mechanical engineering, currently pursuing her Ph.D. at the Technical University of Darmstadt. With a solid academic background and a CGPA of 17.51/20 in her Master’s studies, she has made notable contributions to fluid mechanics, heat transfer, and energy conservation. Samaneh’s research interests encompass fluid-structure interaction (FSI), computational fluid dynamics (CFD), turbulence, bio-mechanics, and numerical simulations. Throughout her academic career, she has earned recognition for her excellent performance, ranking 5th in her Master’s cohort and 3rd in her Bachelor’s program. Her work has been published in high-impact journals such as Energies and the International Journal of Multiphase Flow. Samaneh is also highly skilled in various engineering software, including Comsol Multiphysics, Ansys-Fluent, and SolidWorks. Alongside her research, she has tutored undergraduate and graduate students at the University of Tabriz.

Profile

Education

Samaneh Abdi Qezeljeh obtained her Bachelor’s degree in Mechanical Engineering from Seraj Higher Education Institute, Tabriz, Iran, where she ranked 3rd in her class. She excelled academically with a CGPA of 17.63/20 (excluding thesis) and earned a thesis grade of 19.75/20. Her thesis focused on Incompressible Flow Simulation in a Backward-Facing Step with an Elastic Wall, highlighting her expertise in computational fluid dynamics (CFD). Samaneh continued her academic journey by pursuing a Master of Science (M.Sc.) in Mechanical Engineering with a focus on Energy Conservation at the University of Tabriz, where she achieved a CGPA of 17.51/20. Her Master’s thesis, titled “Investigation of Different Fluids on the Performance of Organic Rankine Cycle with and Without Preheater,” reflects her research interests in energy systems. Currently, she is enrolled in the Ph.D. program at Technical University of Darmstadt, focusing on fluid mechanics and thermal load peak treatment.

Experience

Samaneh Abdi Qezeljeh has gained valuable practical experience through her internship at I.D.E.M Co. (Iranian Diesel Engine Manufacturing Co.), where she worked in the Research and Development (R&D) department from July to August 2017. During this internship, Samaneh was involved in the design and modification of engines, particularly focusing on optimizing engine performance. This hands-on experience enhanced her understanding of real-world mechanical engineering challenges and deepened her knowledge of energy systems. In her academic career, Samaneh has contributed to the advancement of fluid mechanics and energy conservation research at the Technical University of Darmstadt. As a Ph.D. student, she is currently working on the study of thermal load peak treatment in turbulent aerosol flows. She has also tutored undergraduate and graduate students at the University of Tabriz, focusing on SolidWorks and CFD software, sharing her expertise and mentoring future engineers.

Research Focus

Samaneh Abdi Qezeljeh’s research focuses primarily on fluid mechanics, heat transfer, and energy systems, with a particular emphasis on computational fluid dynamics (CFD) and fluid-structure interaction (FSI). Her work also explores bio-mechanics, turbulence modeling, and numerical simulations to address real-world engineering problems. As a Ph.D. candidate at the Institute for Fluid Mechanics and Aerodynamics at Technical University of Darmstadt, Samaneh’s current research project, titled “Study of Thermal Load Peak Treatment in the Air Gap Utilizing Turbulent Aerosol Flows”, is investigating ways to optimize thermal performance in energy systems. Her previous work on the Organic Rankine Cycle has further solidified her interest in energy conservation techniques and sustainable energy solutions. Samaneh has also studied incompressible fluid flows in her Master’s thesis and has explored advanced fluid simulations, focusing on the interaction between fluids and structural elements.

Publication Top Notes

 

 

Mohammad-Mahdi Pazuki | Energy Systems Engineering | Best Researcher Award

Mr Mohammad-Mahdi Pazuki | Energy Systems Engineering | Best Researcher Award

Ph.D Student, KN Toosi University, Iran

Mohammad-Mahdi Pazuki is an accomplished researcher and engineer specializing in energy systems and policy analysis. He has made significant contributions to sustainable energy transitions through innovative research and interdisciplinary projects. His work blends advanced technologies, such as machine learning and optimization algorithms, with real-world applications in renewable energy solutions. He is dedicated to addressing critical energy challenges in Iran and beyond, and his commitment to academic excellence is evidenced by his top rankings in national exams and university performance. He actively engages in teaching and mentorship, fostering the next generation of engineers and researchers.\

Profile

Orcid

Strengths for the Award

  1. Innovative Research: Mohammad-Mahdi Pazuki has made significant contributions to the field of energy systems through his advanced research in energy policy analysis, optimization, and renewable energy solutions. His work, especially in machine learning applications for carbon capture and renewable energy systems, showcases his ability to integrate cutting-edge technology with practical energy solutions.
  2. Strong Academic Background: With an impressive GPA of 18.88/20 in his M.Sc. in Energy Systems Engineering, he ranks second in his university. His academic achievements, alongside his top ranking in the national university entrance exam, highlight his dedication and competence in his field.
  3. Diverse Skill Set: Pazuki’s proficiency in programming (MATLAB, Python), machine learning, and energy system modeling demonstrates a robust technical skill set. His ability to apply various optimization algorithms and engage in CFD simulation further solidifies his expertise.
  4. Publications and Projects: He has authored and contributed to multiple high-quality publications, many of which are under review or in progress. His diverse projects, ranging from solar desalination systems to energy policy assessments, indicate a well-rounded approach to research and practical applications.
  5. Teaching and Leadership Experience: His role as a teaching assistant and involvement in organizing significant conferences and projects reflect strong communication and leadership abilities. His participation in judging panels for technology festivals demonstrates his commitment to advancing the field.

Areas for Improvement

  1. Broader Impact Assessment: While his research is innovative, further emphasis on the societal and environmental impacts of his work could enhance its relevance. Developing frameworks to measure these impacts could provide more comprehensive insights into the implications of his research.
  2. Networking and Collaboration: Although he has engaged in various projects, expanding his professional network through international collaborations could lead to more diverse perspectives and opportunities for joint research initiatives.
  3. Public Engagement: Increasing public engagement through outreach initiatives or community projects related to energy sustainability could enhance the visibility of his work and promote awareness of renewable energy technologies.

Education

Mohammad-Mahdi holds a Master’s degree in Energy Systems Engineering from K.N. Toosi University of Technology, where he achieved a GPA of 18.88/20, ranking second in his program. He completed his Bachelor’s degree in Mechanical Engineering at the same institution, with a GPA of 14.93/20. His academic journey began with a diploma in Physics and Mathematics from Roshd High School, where he graduated with a GPA of 19.70/20. His education has equipped him with a strong foundation in engineering principles, energy systems, and policy analysis, enabling him to tackle complex challenges in sustainable energy.

Experience

Mohammad-Mahdi’s professional experience encompasses a variety of research and engineering roles. He has served as a researcher at Niroo Research Institute and the Energy Integration Lab, contributing to projects on energy policy, optimization, and renewable technologies. He has also held executive positions, including Chief Operating Officer at a digital marketing agency. His internships in construction and power plant engineering have provided practical insights into the energy sector. Additionally, he has taught courses in system dynamics and decision-making, showcasing his dedication to education and knowledge dissemination in the field of energy systems.

Research Focus

Mohammad-Mahdi’s research interests span energy policy and economics, system dynamics, renewable energy, and machine learning applications. He is particularly focused on enhancing energy efficiency and sustainability through innovative solutions, such as geothermal poly-generation systems and carbon capture technologies. His work in electricity demand-side management aims to inform effective policymaking for sustainable energy transitions. He also explores the integration of renewable energy in urban settings and the socio-environmental implications of energy systems. His interdisciplinary approach combines technical expertise with an understanding of environmental and social challenges in the energy sector.

Publication Top Notes

  • “Enhancing efficiency in an innovative geothermal poly-generation system for electricity, cooling, and freshwater production through integrated multi-objective optimization: A holistic approach to energy, exergy, and enviro-economic effects”
  • “An Intelligent Solvent Selection Approach in Carbon Capturing Process: A Comparative Study of Machine Learning Multi-Class Classification Models”
  • “Solar-Powered Bitcoin Mining: Bridging Economic Viability with Environmental Sustainability”
  • “Exploring Evaporation Dynamics in Solar Stills: Influence of Fabric Material Composition and Brine Concentration”
  • “Optimization and Analysis of Adsorption Desalination Systems: Integrating Multi-Objective Particle Swarm Optimization (MOPSO) with Environmental, Economic, and Exergy Analyses”
  • “The evaporation experiments on carboxyl-functionalized multi-walled carbon nanotube/polyvinyl alcohol – polyester (3D CNT/PVA-PET) fabric with hole array”
  • “Modeling and assessment of Iran’s electricity demand-side management (DSM) policies applying system dynamics (SD) approach”
  • “Intelligent Energy Management: Strategies, Applications, and Policy Implications” (Book in progress)

Conclusion

Mohammad-Mahdi Pazuki stands out as a leading candidate for the Best Researcher Award due to his innovative contributions to energy systems, strong academic credentials, diverse skill set, and impactful research. By focusing on enhancing the societal impact of his work and expanding his collaborative efforts, he can further elevate his research profile and contribute meaningfully to the field of energy sustainability. His commitment to advancing energy policy and technology positions him as a promising researcher poised to make significant contributions in the future.

Sanyogita Manu | Engineering and Technology | Best Researcher Award

Ms. Sanyogita Manu | Engineering and Technology | Best Researcher Award

PhD Candidate, The University of British Columbia, Canada

Publication Profile

Google scholar

Strengths for the Award

  1. Innovative Research Focus: Sanyogita’s work addresses a significant issue—indoor environmental quality during a time when many transitioned to remote work due to the pandemic. Her systematic study has the potential to inform guidelines and policies related to home office setups, highlighting its relevance in current public health discussions.
  2. Methodological Rigor: The research employs a robust methodology, utilizing continuous monitoring of various IEQ parameters alongside subjective assessments from participants. This comprehensive approach enhances the reliability of her findings.
  3. Professional Affiliations and Contributions: Sanyogita is actively engaged in professional organizations related to her field, serving on committees and reviewing journals. Her involvement in international conferences signifies her commitment to advancing research in IEQ and energy-efficient design.
  4. Publication Record: With multiple peer-reviewed publications and conference proceedings, Sanyogita demonstrates a solid track record in disseminating her research findings, contributing to the academic community’s understanding of indoor environments.
  5. Awards and Recognition: Her prior achievements and recognitions, including scholarships and awards, underscore her dedication and excellence in research.

Areas for Improvement

  1. Broader Impact Assessment: While her research is focused on WFH settings, there may be an opportunity to expand her study to include diverse populations and different geographical locations to enhance the generalizability of her findings.
  2. Interdisciplinary Collaboration: Collaborating with professionals from related fields such as psychology, sociology, or occupational health could enrich her research and offer a more holistic understanding of the WFH experience.
  3. Public Engagement: Engaging in public outreach or workshops to share her findings with broader audiences, including policymakers and the general public, could enhance the impact of her work and foster practical applications of her research.

Education

Sanyogita holds a Master’s degree in Interior Architecture and Design, specializing in Energy and Sustainability from CEPT University, India, where her dissertation focused on optimizing window performance in commercial buildings. She also earned her Bachelor’s degree in Interior Design from the same institution, with a dissertation exploring the thermal effects of furniture in interior environments. 🎓

Experience

With extensive experience in academia and research, Sanyogita has contributed to various projects assessing indoor environmental conditions and energy efficiency in buildings. She has served on several scientific committees and has been actively involved in peer review for reputable journals, reflecting her expertise in the field. 🏢

Research Focus

Her research primarily focuses on indoor environmental quality (IEQ) and its impact on occupant well-being and productivity, particularly in work-from-home settings. Sanyogita employs a systematic approach to evaluate both perceived and observed IEQ, utilizing a variety of environmental monitoring tools. 🔍

Awards and Honours

Sanyogita is a member of multiple prestigious organizations, including the International Society of Indoor Air Quality and Climate (ISIAQ) and the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). She has been recognized for her contributions to building performance simulation and energy conservation, reflecting her commitment to sustainable practices. 🏆

Publication Top Notes

Manu, S., & Rysanek, A. (under review). A novel dataset of indoor environmental conditions in work-from-home settings. Building and Environment.

Manu, S., & Rysanek, A. (2024). A Co-Location Study of 87 Low-Cost Environmental Monitors: Assessing Outliers, Variability, and Uncertainty. Buildings, 14(9), Article 9. Link

Manu, S., et al. (2024). A state-of-the-art, systematic review of indoor environmental quality studies in work-from-home settings. Building and Environment, 111652. Link

Doctor-Pingel, M., et al. (2019). A study of indoor thermal parameters for naturally ventilated occupied buildings in the warm-humid climate of southern India. Building and Environment, 151, 1-14. Link

Manu, S., et al. (2019). Performance evaluation of climate responsive buildings in India – Case studies from cooling dominated climate zones. Building and Environment, 148, 136-156. Link

Gupta, R., et al. (2019). Customized performance evaluation approach for Indian green buildings. Building Research & Information, 47(1), 56–74. Link

Conclusion

Sanyogita Manu’s research on indoor environmental quality in work-from-home settings is both timely and significant. Her methodological rigor, publication record, and active participation in professional communities demonstrate her dedication to advancing knowledge in her field. While there are areas for improvement, her strengths strongly position her as a worthy candidate for the Best Researcher Award. Her work has the potential to influence policy and improve well-being in residential work environments, making her contributions invaluable in today’s context.

Ahmed Deabs | Mechanical Engineering | Best Researcher Award

Assoc Prof Dr. Ahmed Deabs | Mechanical Engineering | Best Researcher Award

Production Engineering and Mechanical Design, Faculty of Engineering, Shebin Elkom, Menoufia University, Egypt

Ahmed Deabs is a dedicated academic and mechanical engineer with a strong background in production engineering and mechanical design. Currently, he serves as a Lecturer at the Faculty of Engineering, Menofia University, and an Adjunct Lecturer at Delta Technological University, Egypt. Ahmed’s expertise spans across CAD, FEM, machine design, and vibration signal processing, making him a versatile educator and researcher in the field.

Publication Profile

 

Strengths for the Award:

  1. Academic and Teaching Excellence: Ahmed Deabs has a strong academic background with significant teaching experience in various engineering disciplines. His ability to teach over 20 different courses, ranging from “Machine Tool Design” to “Engineering Mechanics,” highlights his versatility and expertise in Production Engineering and Mechanical Design.
  2. Research Contributions: He has several publications in reputable journals and conferences, showcasing his research in areas like CAD, FEM, and parallel robots. His work on topics like “Computer Aided Design of Multi-Stage Gearboxes” and “Optimizing Vertical Pump Reliability” demonstrates his commitment to advancing engineering knowledge.
  3. Industrial and Practical Experience: Ahmed’s involvement in industrial projects, including the design and supervision of mechanical systems like renewable electricity generation systems and industrial production lines, underscores his practical skills and ability to apply research in real-world scenarios.
  4. Technological Proficiency: His proficiency in various engineering and computer tools like SOLIDWORKS, AUTOCAD, MATLAB, and his certifications (e.g., CSWP, CSWA) further bolster his technical capabilities, making him a well-rounded candidate for the award.
  5. Community and Educational Outreach: Ahmed’s initiative in creating and managing free educational resources, including YouTube channels and forums, reflects his dedication to sharing knowledge and supporting the engineering community.

Areas for Improvement:

  1. Research Impact: While Ahmed has a solid number of publications, there could be a focus on increasing the impact and citation of his research. Engaging in more collaborative research projects and targeting high-impact journals could further elevate his academic profile.
  2. International Exposure: Expanding his research collaborations and academic presence internationally could enhance his recognition. Participation in more global conferences and partnerships with international researchers would be beneficial.
  3. Grant Acquisition: Increasing his involvement in competitive research projects and securing grants would demonstrate his capability to lead large-scale research initiatives, further supporting his candidacy for the award.

 

🎓 Education

Ahmed Deabs holds a solid academic foundation in engineering, beginning as a Demonstrator in the Production Engineering and Mechanical Design Department at Menofia University in 2012. He advanced to Assistant Lecturer in 2016 and became a Lecturer in 2022. He also began serving as an Adjunct Lecturer at Delta Technological University in 2023, broadening his teaching experience.

🛠️ Experience

Ahmed has an extensive teaching portfolio, having taught over 20 different courses across various engineering disciplines. His experience includes supervising laboratories, contributing to accreditation projects, and participating in continuous improvement initiatives at Menofia University. His industrial work includes freelance mechanical design and supervising machine fabrication processes for Egyptian and Arabic companies.

🔍 Research Focus

Ahmed’s research interests are diverse, including Computer-Aided Design (CAD), Finite Element Method (FEM), machine design, and parallel robots. He also explores advanced topics like artificial neural networks, deep learning, and vibration signal processing, contributing to the evolution of mechanical engineering.

🏆 Awards and Honors

Ahmed has been recognized for his contributions to engineering education and research, particularly through his involvement in continuous improvement projects and his role in updating laboratory instruments at Menofia University. He also holds several certifications, including SOLIDWORKS and AUTOCAD, reflecting his commitment to professional development.

📄 Publications

“Computer Aided Design of Multi-Stage Gearboxes”International Journal of Advanced Engineering and Global Technology (IJAEGT), Vol. 2, Issue 12, 2014. Cited by 11 articles Link to Publication

“Structural Modifications of 1K62 Engine Lathe Gearbox Casing”International Journal of Advanced Engineering and Global Technology (IJAEGT), Vol. 3, Issue 2, 2015. Cited by 9 articles Link to Publication

“Parallel Robot – Review Article”Journal of Engineering Science and Technology Review, 2021. Cited by 6 articles Link to Publication

“Assessment of Parallel Robot Dynamic Characteristics Using Experimental Modal Analysis and Finite Elements”The First International Conference in Technological University Education and its Role in Industry, Energy and Environmental Conservation (ICCTU 2022), 2022. Cited by 3 articles Link to Publication

Optimizing Vertical Pump Reliability: Investigating Main Shaft Challenges through Integrated Design and Testing StrategiesWater Science, 2024. Cited by 5 articles Link to Publication

 

Conclusion:

Ahmed Deabs is a strong candidate for the Researcher Award, given his extensive academic, research, and industrial contributions. His commitment to education, both in the classroom and through online platforms, alongside his technical expertise, makes him a well-rounded and deserving nominee. Focusing on increasing the impact of his research and expanding his international collaborations could further strengthen his candidacy. Overall, his achievements and contributions make him a suitable contender for the award.