Abdulhalim Musa Abubakar | Process Engineering | Chemical Engineering Award

Mr. Abdulhalim Musa Abubakar | Process Engineering | Chemical Engineering Award

Modibbo  Adama University (MAU) ,Nigeria

Abdulhalim Musa Abubakar is a Nigerian Chemical Engineer dedicated to innovation in renewable energy, chemical reaction engineering, and water treatment. Born and raised in Adamawa State, he has developed a solid foundation in both theoretical knowledge and practical application of chemical engineering principles. With academic qualifications from the University of Maiduguri and a diverse professional portfolio, he brings experience from academic, industrial, and development sectors. His work spans teaching, research, water quality analysis, and biogas technology. Abdulhalim currently serves as an Assistant Lecturer at Modibbo Adama University (MAU), where he integrates research, student mentorship, and curriculum advancement. Known for being proactive, detail-oriented, and results-driven, he is committed to using his skills for environmental sustainability and energy transformation in Nigeria and beyond. His vision is to contribute meaningfully to solving global energy and environmental challenges through cutting-edge research and innovative engineering practices.

Professional Profile

Orcid

🎓 Education

Abdulhalim Musa Abubakar holds both Bachelor’s and Master’s degrees in Chemical Engineering from the University of Maiduguri, where he graduated with distinctions (B.Eng: 4.55 CGPA, M.Eng: 4.85 CGPA). His academic journey began at University Primary School, followed by Imam Malik Secondary School, where he earned his WAEC certificate in 2013. He pursued higher education with a clear focus on energy, environmental remediation, and reaction engineering. In addition to formal academic achievements, he has undertaken numerous professional training programs and certifications, including diplomas in Oil & Gas Management and Control Engineering, and certifications in AutoCAD, data science, project management, and programming. These multi-disciplinary skills strengthen his engineering knowledge and his capacity to tackle complex industrial challenges. His educational path reflects a strong commitment to academic excellence and lifelong learning, enabling him to contribute both in research and practical problem-solving within the chemical engineering domain.

💼 Experience

Abdulhalim Musa Abubakar has gained diverse experience across academic, industrial, and community-based projects. He began his practical journey as a Plant Operator Intern at Maiduguri Water Treatment Plant in 2017. During his NYSC service year, he served at Mada Water Works, where he performed water quality analysis. He briefly taught at Bulumkutu Islamic Science School before joining Modibbo Adama University (MAU) in 2019 as a Graduate Assistant, and subsequently, as an Assistant Lecturer in 2023. He has participated in data gathering and fieldwork as an Enumerator with Borno Women Development Initiative. His career showcases a balance of academic responsibilities and field engagement. He also has notable experience with environmental modeling and simulation software, and his teaching and research focus on sustainable engineering practices. These roles reflect his multidisciplinary capabilities and his commitment to using engineering tools for real-world impact, especially in energy and environmental sectors.

🏆 Awards and Honors

Abdulhalim Musa Abubakar has been recognized for his service, academic excellence, and professional dedication. Notable among his accolades is the Certificate of Service awarded for his voluntary role as Tutorial Coordinator by the Nigerian Society of Chemical Engineers (NSChE), UNIMAID Student Chapter (2018). He also received recognition from the Muslim Students’ Society of Nigeria (MSSN), Faculty of Engineering Branch, for his voluntary academic support in 2017/2018. He has earned certificates of participation and achievement in over a dozen international workshops, seminars, and webinars, including those hosted by prestigious institutions such as the Royal Society of Chemistry, Polytechnic University of the Philippines, and Siirt University in Türkiye. His proactive participation in global conferences and research congresses underscores his commitment to continuous learning and professional engagement. These honors reflect both academic leadership and a deep-seated drive to contribute to scholarly and societal advancement in engineering and beyond.

🔍 Research Focus

Abdulhalim Musa Abubakar’s research centers around renewable energy systems, biogas production, microbial kinetics, environmental remediation, chemical reaction engineering, and waste-to-energy technologies. He has a particular interest in transforming organic waste materials, such as chicken manure and medical waste, into biogas through anaerobic digestion processes. His master’s research explored microbial growth modeling and digester performance, contributing insights into sustainable energy generation from biodegradable waste. His research also addresses pharmaceutical waste management, modeling and simulation using ASPEN Plus, and water treatment processes using eco-friendly techniques. Additionally, he has presented studies on energy access in underserved areas like refugee camps, reflecting his interest in humanitarian engineering. Abdulhalim is dedicated to applying data science, programming, and simulation tools to solve energy and environmental challenges. His goal is to develop scalable, cost-effective technologies that bridge the gap between clean energy supply and waste reduction, particularly in Africa and other developing regions.

📚 Publication Top Notes

1. Modeling Anaerobic Decomposition: JMP Application with Biomass Data

Authors: Abubakar, A. M.; Elboughdiri, N.; Chibani, A.; Nneka, E. C.; Yunus, M. U.; Ghernaout, D.
Journal: Portugaliae Electrochimica Acta (2025)
Summary: This paper models anaerobic digestion using JMP software based on experimental data from two biomass combinations in Nigeria. Neural networks and response surface methodology were applied to optimize biogas production. Monod kinetic parameters were also estimated, showing excellent prediction accuracy and insight into biomass-substrate interactions.

2. Review on Municipal Solid Waste, Challenges and Management Policy in Pakistan

Authors: Asif, M.; Laghari, M.; Abubakar, A. M.; Suri, S. K.; Wakeel, A.; Siddique, M.
Journal: Portugaliae Electrochimica Acta (2025)
Summary: A critical review highlighting Pakistan’s challenges in managing municipal solid waste, including rapid urbanization, insufficient infrastructure, and lack of effective policy enforcement. It recommends comprehensive reforms, sustainable waste processing, and public-private collaborations for improved waste governance.

3. Development of Low-Cost Adsorbents from Coconut Shell for Energy-Efficient Dye Removal from Laboratory Effluent Discharge

Authors: Abdulhalim Musa Abubakar; Naeema Nazar; Abdulghaffaar Assayyidi Yusuf; Enyomeji Ademu Idama; Moses NyoTonglo Arowo; Aisha Maina Ma’aji; Irnis Azura Zakarya
Journal: Measurement: Energy (June 2025)
Summary: This research focuses on developing coconut shell-based adsorbents for removing dyes from laboratory wastewater. The material showed over 90% dye removal efficiency under optimal conditions and was confirmed as a cost-effective and energy-efficient method for effluent treatment.

4. Characterizing the Reducing Properties of Biofuels in Activating Metal Catalyst of Refinery Process

Authors: Mohammed Abdulrahim; Usman Habu Taura; Abdulhalim Musa Abubakar; Marwea Al-Hedrewy
Journal: Sustainable Processes Connect (May 2025)
Summary: Examines the effectiveness of biofuels in enhancing metal catalyst performance in refinery processes. The study found that biofuels provided a reducing atmosphere that facilitated catalyst activation but also noted challenges such as catalyst deactivation and thermal instability.

5. Impact of Furfural Raffinate Oil as a Filling Agent on the Vulcanization and Mechanical Properties of Rubber

Authors: Suleiman A. Wali; Abubakar Mohammed; Abdulhalim Musa Abubakar; Abdulmuhsin Usman; Kamran Khan
Journal: Current Engineering Letters and Reviews (January 2025)
Summary: Investigates the use of furfural raffinate oil as a rubber additive. Findings show improvements in rubber strength and flexibility up to a certain concentration, indicating potential for sustainable and cost-effective rubber production using industrial by-products.

Conclusion

Abdulhalim Musa Abubakar stands out as a dynamic and forward-thinking Chemical Engineer whose academic achievements, hands-on industrial experiences, and proactive engagement in research and professional development reflect a deep commitment to sustainable innovation. His work spans critical sectors including renewable energy, biogas production, water treatment, and environmental remediation—key areas that align with global sustainability goals. Through a strong foundation in chemical engineering, supported by advanced software and data science skills, he has consistently demonstrated his ability to bridge theoretical knowledge with practical applications. Abdulhalim’s numerous certifications, conference contributions, and teaching roles further underscore his dedication to lifelong learning and capacity building. As he continues to evolve as a researcher and educator, his efforts are poised to contribute significantly to solving pressing energy and environmental challenges both within Nigeria and internationally. His trajectory reflects not only technical competence but also a clear vision for engineering as a tool for societal transformation.

Juras Skardžius | Mechanics Engineering | Best Researcher Award

Dr. Juras Skardžius | Mechanics Engineering | Best Researcher Award

Juras Skardžius is an accomplished engineer with experience in the automotive industry. Specializing in MetrologX (CMM), Computer-Aided Design (CAD), SolidWorks/Pro-Engineer, reverse engineering, and APQP packages, Juras has a strong ability to turn complex designs into tangible parts. With certifications in AIAG Quality Core Tools, IATF Automotive standards, and ISO 9001 and 14001, Juras brings expertise in quality control, documentation, and feasibility studies. A proactive and continuously growing professional, he has contributed extensively to automotive engineering through both hands-on experience and research.

Profile

Orcid

Education

Juras Skardžius holds both a Bachelor’s (2012-2016) and a Master’s (2022-2024) degree in Transport Technology Science (Automobile Engineering) from the prestigious Vilnius Gediminas Technical University. His academic background provides him with in-depth knowledge of engineering principles and advanced techniques used in automotive technology. Throughout his studies, Juras focused on modernizing automotive manufacturing processes, including implementing sensor technologies to improve efficiency. His academic career has laid the foundation for his ongoing contributions to the automotive sector, integrating cutting-edge research with practical experience.

Experience

Juras Skardžius has a diverse career in the automotive sector, working for several companies where he honed his skills in project engineering, design, and quality control. He is currently employed at UAB Stansefabrikken Automotive, where he is responsible for new project documentation preparation, CMM programming, and product implementation. His experience also spans roles at UAB Baltexim as a designer and at UAB Forveda as a Service and Aftersale Manager. Juras’s hands-on roles in manufacturing processes and his ability to manage important clients has given him extensive exposure to various facets of the industry.

Research Focus

Juras Skardžius’s research focus lies in the modernization of automotive manufacturing processes. He has developed innovative methods for real-time part quality monitoring using stamping force in progressive stamping and has worked on tool modernization using sensor technologies. His research aims to optimize manufacturing efficiency, improve product quality, and reduce costs in automotive production. Juras is particularly interested in the integration of sensor technologies like eddy current and load sensors into stamping processes to enhance production accuracy and reliability. His work bridges the gap between theory and practice in automotive engineering.

Publication Top Notes

  1. Alternative Real-Time Part Quality Monitoring Method by Using Stamping Force in Progressive Stamping Process
    Journal of Manufacturing and Materials Processing 📚🔧

  2. Progressive Tool Modernization Using Sensor Technology in Automotive Parts Manufacturing
    TRANSBALTICA XIV: Transportation Science and Technology 🛠️⚙️

  3. Modernization of the Stamping Process Using Eddy Current and Load Sensors in the Manufacturing of Automotive Parts
    Eksploatacja i Niezawodność – Maintenance and Reliability 🏭📊

 

 

Libero Nigro | Software Engineering | Excellence in Research

Prof. Dr. Libero Nigro | Software Engineering | Excellence in Research

Professor, University of Calabria, Italy

Libero Nigro is a distinguished Full Professor of Computer Engineering at the University of Calabria (UNICAL), Italy. With a career spanning over four decades, he has contributed significantly to education, research, and software engineering. He has held various academic positions since 1979, starting as an Assistant Professor and advancing to Full Professor in 2000. Known for his expertise in object-oriented programming, concurrent programming, and simulation, he has played a key role in shaping Computer Engineering education at UNICAL. Over his career, he has supervised several PhD students and participated in multiple national research projects. His expertise extends to numerous journal and conference reviews, and he is an editorial board member for prominent journals like Simulation Modelling Practice and Theory and World Journal of Modelling and Simulation. His research focuses on distributed systems, real-time systems, agent-based modeling, and cyber-physical systems.

Profile

Orcid

Strengths for the Award

  1. Extensive Academic Experience:
    • Libero Nigro has held significant academic positions from Assistant Professor to Full Professor at the University of Calabria (UNICAL), contributing immensely to education in computer engineering, including courses in object-oriented programming, concurrent programming, and real-time systems. His role in teaching and shaping curricula at UNICAL spans more than four decades, showing strong educational leadership.
  2. Research Leadership:
    • He has led numerous national research projects (such as MURST60%, MURST40%, and CNR projects) and has collaborated on international projects, demonstrating his capacity for both leadership and collaboration in research.
    • He is the scientific responsible for the Software Engineering Laboratory at UNICAL/DIMES, further illustrating his organizational and technical skills in research.
  3. Scientific Contributions:
    • Nigro has co-authored several impactful publications, including journal articles and book chapters, focused on cutting-edge topics like distributed simulation, clustering algorithms, mutual exclusion algorithms, agent-based systems, and smart grids. His work has contributed to significant advancements in these fields.
    • He has also mentored multiple PhD students, some of whom have gone on to make substantial contributions in related areas.
  4. Recognition and Peer Influence:
    • Libero Nigro’s recognition as one of the best reviewers for the journal Software and System Modelling (SoSyMo) in 2020 highlights his standing in the research community. His active participation in editorial boards and international conferences further strengthens his credibility.
    • His regular role in peer reviewing for several top-tier journals and conferences underscores his expert knowledge and respected opinion in the field.
  5. Innovation and Impact:
    • His research in formal verification, distributed simulation, and the modeling of real-time and cyber-physical systems is not only innovative but also highly relevant to modern computing challenges. His publications are regularly cited, indicating significant impact within his field.
  6. Comprehensive and Diverse Expertise:
    • Nigro has a well-rounded skill set, ranging from algorithm design and systems programming to software engineering and computational modeling. His expertise spans both theoretical foundations and practical applications, providing a holistic approach to research challenges.

Areas for Improvement

  1. Broader International Collaboration:
    • While Nigro has been involved in national projects and collaborations, there could be further opportunities to expand his international research network, especially with institutions outside Europe, which would enhance his global impact.
  2. Public Outreach and Dissemination:
    • Although his work has made substantial contributions to academic and research communities, there could be more engagement in public outreach or dissemination efforts aimed at a wider audience, including industry stakeholders or policy-makers, especially for real-world applications such as smart grids and energy systems.
  3. Diversity in Research Topics:
    • While his research areas are highly specialized and impactful, branching into interdisciplinary research that combines computer engineering with areas like artificial intelligence, robotics, or environmental sustainability might open up new avenues for research and innovation.

Education

Libero Nigro earned a degree in Electrical Engineering, summa cum laude, from the University of Calabria (UNICAL) in 1978. His academic journey laid a strong foundation in Software Engineering, Computer Programming, and Simulation. His studies and professional training focused on the design, analysis, and implementation of distributed systems and real-time systems. With a strong passion for advancing knowledge in the field of Computer Engineering, he has remained actively involved in both teaching and research throughout his career. His expertise includes systems programming, concurrent programming, discrete-event simulation, real-time systems, and multi-agent systems. Over the years, he has not only contributed to the development of his discipline but also shaped future generations of engineers and researchers. His professional achievements also include the co-authorship of textbooks aimed at introducing key concepts of programming and concurrent systems. He is currently still engaged in teaching, including a course on Object-Oriented Programming.

Experience

Libero Nigro has extensive experience in academia, spanning over 40 years in the field of Computer Engineering. From 1979 to 1985, he worked as an Assistant Professor in the Electrical Department at UNICAL, where he focused on courses related to computer science and programming. He then served as an Associate Professor at UNICAL’s DEIS Department from 1986 to 1999, before becoming a Full Professor in the DIMES Department from 2000 until 2023. Throughout his career, he has taught various foundational and advanced courses in Computer Science, covering topics such as Object-Oriented Programming, Real-Time Systems, Multi-Agent Systems, and Simulation. He has been responsible for managing several key research projects funded by national institutions and contributed to academic advancements in his field. He also served as the scientific head of the Software Engineering Laboratory at UNICAL. Currently, he teaches Object-Oriented Programming as a contract professor at DIMES.

Research Focus 

Libero Nigro’s research interests lie in the specification, analysis, design, and implementation of concurrent and time-dependent distributed systems. His work has focused on real-time systems, distributed simulation, and agent-based modeling of complex systems. He explores the formal modeling and exhaustive verification of such systems, often using Petri nets and model-checking techniques. A major area of his research is in the design and verification of mutual exclusion algorithms and system behaviors in concurrent systems. Nigro also investigates applications in smart grids, power management, and the modeling of cyber-physical systems. His research has practical implications in areas like energy management, the Internet of Things (IoT), and distributed simulation environments. Additionally, he has worked on clustering algorithms, particularly evolutionary techniques for improving the performance of K-means clustering. His multidisciplinary research aims to push the boundaries of distributed and real-time systems, creating robust, scalable, and efficient solutions for complex technological challenges.

Publication Top Notes

  1. Clustering Performance of an Evolutionary K-Means Algorithm 📚👨‍💻
    Authors: Libero Nigro, Franco Cicirelli, Francesco Pupo
  2. A K-Means Variation Based on Careful Seeding and Constrained Silhouette Coefficients 📖💻
    Authors: Libero Nigro, Franco Cicirelli, Francesco Pupo
  3. Verifying Mutual Exclusion Algorithms with Non-Atomic Registers 🧑‍💻📊
    Authors: Libero Nigro
  4. Formal Modeling and Verification of Lycklama and Hadzilacos’s Mutual Exclusion Algorithm 📘🔍
    Authors: Libero Nigro
  5. Correctness Verification of Mutual Exclusion Algorithms by Model Checking ✅🔐
    Authors: Libero Nigro, Franco Cicirelli
  6. Modeling and Analysis of Dekker-Based Mutual Exclusion Algorithms 🔬🔄
    Authors: Libero Nigro, Franco Cicirelli, Francesco Pupo
  7. Formal Modeling and Verification of Embedded Real-Time Systems: An Approach and Practical Tool Based on Constraint Time Petri Nets 🕰️📐
    Authors: Libero Nigro, Franco Cicirelli
  8. Fast and Accurate K-means Clustering Based on Density Peaks ⚡📊
    Authors: Libero Nigro, Franco Cicirelli
  9. Improving K-means by an Agglomerative Method and Density Peaks 🧠📈
    Authors: Libero Nigro, Franco Cicirelli
  10. Improving Clustering Accuracy of K-Means and Random Swap by an Evolutionary Technique Based on Careful Seeding 🧑‍💻🔍
    Authors: Libero Nigro, Franco Cicirelli

Conclusion

Libero Nigro is highly deserving of the Research Excellence Award. His career reflects outstanding achievements in research, education, and academic leadership. His significant contributions to fields like real-time systems, distributed simulation, and system modeling, paired with his leadership in numerous research projects and mentoring roles, make him a clear candidate for this award. While there is room for greater international collaboration and outreach, his contributions to the field of computer engineering are profound and far-reaching. In conclusion, Libero Nigro is a role model in academia, with a well-rounded career in research, education, and leadership that is precisely aligned with the values celebrated by the Research Excellence Award.

 

Majed Almubarak | Geomechanics | Best Researcher Award

Mr Majed Almubarak | Geomechanics | Best Researcher Award

PhD Student, Massachusetts Institute of Technology, United States

Majed AlMubarak is a dedicated PhD candidate in Petroleum Engineering at Texas A&M University, where he maintains a perfect GPA of 4.0. With a rich academic background that includes a Master’s degree from MIT and a Bachelor’s degree from Texas A&M, Majed has consistently demonstrated excellence in his studies. He has significant experience in both industry and research, having worked as a reservoir engineer at Saudi Aramco and contributed to various high-impact research projects. Majed is passionate about advancing energy technologies and sustainable practices within the petroleum industry.

Profile

Google Scholar

Strengths for the Award

  1. Academic Excellence:
    • Majed has demonstrated exceptional academic performance throughout his educational journey, achieving a 4.0 GPA in his PhD program and a 4.9 GPA in his Master’s degree at MIT. His summa cum laude distinction during his undergraduate studies further showcases his commitment to excellence.
  2. Diverse Research Experience:
    • His extensive research background spans multiple prestigious institutions, including Texas A&M University and MIT. He has participated in various impactful projects related to petroleum engineering, rock mechanics, and geothermal systems, indicating a breadth of knowledge and adaptability in different research environments.
  3. Innovative Contributions:
    • Majed’s research on CO2 injection challenges, electro-hydraulic fracturing, and the development of novel fracturing fluids demonstrates his capacity for innovation in addressing complex industry challenges. His work on smart underground space exploration also reflects a forward-thinking approach to integrating technology and research.
  4. Publication Record:
    • With multiple published works and citations in prominent journals and conferences, Majed has established himself as a thought leader in his field. His involvement in various projects that contribute to the understanding of fluid dynamics and rock interactions enhances his visibility and credibility as a researcher.
  5. Industry Experience:
    • His practical experience as a reservoir engineer at Saudi Aramco equips him with a strong understanding of real-world applications, enhancing his research’s relevance and applicability to the petroleum industry.

Areas for Improvement

  1. Networking and Collaboration:
    • While Majed has a strong foundation, increasing his engagement in interdisciplinary collaborations could enrich his research perspectives and lead to novel findings. Actively participating in more workshops and conferences can enhance his professional network.
  2. Broader Impact of Research:
    • Focusing on how his research can be translated into broader societal benefits, such as environmental sustainability and energy efficiency, could enhance the impact of his work and appeal to a wider audience.
  3. Leadership Roles:
    • Taking on leadership roles in research projects or student organizations could further develop his management and mentorship skills, positioning him as a leader in the academic community.

Education

Majed AlMubarak is currently pursuing a PhD in Petroleum Engineering at Texas A&M University, expected to graduate in 2026 with a 4.0 GPA. He holds a Master of Science in Civil and Environmental Engineering from MIT, where he achieved an impressive GPA of 4.9. Majed also earned his Bachelor of Science in Petroleum Engineering from Texas A&M University in 2019, graduating summa cum laude with a GPA of 3.91. His educational journey reflects a strong foundation in engineering principles, enhanced by rigorous coursework and research experiences that have shaped his expertise in geomechanics and reservoir engineering.

Experience

Majed AlMubarak has gained valuable industry experience as a Reservoir Engineer at Saudi Aramco’s EXPEC Advanced Research Center. During his tenure from 2019 to 2020, he led projects focusing on CO2 enhanced oil recovery and experimental work addressing CO2 injection challenges. His hands-on approach involved utilizing advanced monitoring techniques and conducting laboratory experiments to improve recovery efficiency. In addition to his industry experience, Majed has served as a Graduate Research Assistant at Texas A&M University and MIT, where he engaged in significant research projects, including acid fracturing geomechanics and electro-hydraulic fracturing for geothermal systems. His diverse experience positions him as a well-rounded professional in the field of petroleum engineering.

Awards and Honors

Majed AlMubarak has received numerous accolades throughout his academic career, underscoring his dedication and excellence in engineering. He was a finalist in the Best Young Professional SPE Endogenous Contest in 2020 and received the Distinguished Student Award from the Dwight Look College of Engineering in 2019. His commitment to research was recognized when he secured first place in the SPE Petroleum Engineering Student Paper Contest in 2018. Furthermore, Majed has consistently achieved academic excellence, earning a place on the President’s List and the Dean’s List from 2015 to 2019. His undergraduate studies were fully sponsored by Saudi Aramco Oil Company, reflecting his potential and the value he brings to the engineering community.

Research Focus

Majed AlMubarak’s research focuses on advancing the understanding of geomechanics and reservoir engineering within the petroleum sector. His current projects at Texas A&M University involve evaluating acid fracturing geomechanics in carbonate rocks and assessing fracture conductivity in the Austin Chalk Formation. He explores innovative solutions for CO2 enhanced oil recovery and examines the efficiency of matrix acid stimulation techniques. His previous work at MIT concentrated on electro-hydraulic fracturing and the effects of various parameters on rock testing, further enriching his expertise. Majed is dedicated to addressing challenges in the energy industry, particularly in improving recovery techniques and promoting sustainable practices through advanced engineering solutions.

Publication Top Notes

  • Investigation of acid-induced emulsion and asphaltene precipitation in low permeability carbonate reservoirs.
  • A collective clay stabilizers review.
  • Insights on potential formation damage mechanisms associated with hydraulic fracturing.
  • Recent advances in waterless fracturing fluids: A review.
  • Chelating agent for uniform filter cake removal in horizontal and multilateral wells: laboratory analysis and formation damage diagnosis.
  • Influence of zirconium crosslinker chemical structure and polymer choice on the performance of crosslinked fracturing fluids.
  • Zirconium crosslinkers: Understanding performance variations in crosslinked fracturing fluids.
  • Enhancing foam stability through a combination of surfactant and nanoparticles.
  • A study on the adsorption behavior of different surfactants in carbonate using different techniques.
  • Turning the most abundant form of trash worldwide into effective corrosion inhibitors for applications in the oil and gas industry.

Conclusion

Majed AlMubarak is a highly qualified candidate for the Best Researcher Award, showcasing exceptional academic achievements, a diverse research portfolio, and significant contributions to the field of petroleum engineering. His strengths in innovation, publication, and industry experience solidify his position as a leading researcher. By focusing on enhancing his networking, broadening the societal impact of his research, and developing leadership skills, Majed can further elevate his profile and influence in the academic and professional communities. His potential for continued excellence makes him a deserving candidate for this prestigious recognition.

Sanyogita Manu | Engineering and Technology | Best Researcher Award

Ms. Sanyogita Manu | Engineering and Technology | Best Researcher Award

PhD Candidate, The University of British Columbia, Canada

Publication Profile

Google scholar

Strengths for the Award

  1. Innovative Research Focus: Sanyogita’s work addresses a significant issue—indoor environmental quality during a time when many transitioned to remote work due to the pandemic. Her systematic study has the potential to inform guidelines and policies related to home office setups, highlighting its relevance in current public health discussions.
  2. Methodological Rigor: The research employs a robust methodology, utilizing continuous monitoring of various IEQ parameters alongside subjective assessments from participants. This comprehensive approach enhances the reliability of her findings.
  3. Professional Affiliations and Contributions: Sanyogita is actively engaged in professional organizations related to her field, serving on committees and reviewing journals. Her involvement in international conferences signifies her commitment to advancing research in IEQ and energy-efficient design.
  4. Publication Record: With multiple peer-reviewed publications and conference proceedings, Sanyogita demonstrates a solid track record in disseminating her research findings, contributing to the academic community’s understanding of indoor environments.
  5. Awards and Recognition: Her prior achievements and recognitions, including scholarships and awards, underscore her dedication and excellence in research.

Areas for Improvement

  1. Broader Impact Assessment: While her research is focused on WFH settings, there may be an opportunity to expand her study to include diverse populations and different geographical locations to enhance the generalizability of her findings.
  2. Interdisciplinary Collaboration: Collaborating with professionals from related fields such as psychology, sociology, or occupational health could enrich her research and offer a more holistic understanding of the WFH experience.
  3. Public Engagement: Engaging in public outreach or workshops to share her findings with broader audiences, including policymakers and the general public, could enhance the impact of her work and foster practical applications of her research.

Education

Sanyogita holds a Master’s degree in Interior Architecture and Design, specializing in Energy and Sustainability from CEPT University, India, where her dissertation focused on optimizing window performance in commercial buildings. She also earned her Bachelor’s degree in Interior Design from the same institution, with a dissertation exploring the thermal effects of furniture in interior environments. 🎓

Experience

With extensive experience in academia and research, Sanyogita has contributed to various projects assessing indoor environmental conditions and energy efficiency in buildings. She has served on several scientific committees and has been actively involved in peer review for reputable journals, reflecting her expertise in the field. 🏢

Research Focus

Her research primarily focuses on indoor environmental quality (IEQ) and its impact on occupant well-being and productivity, particularly in work-from-home settings. Sanyogita employs a systematic approach to evaluate both perceived and observed IEQ, utilizing a variety of environmental monitoring tools. 🔍

Awards and Honours

Sanyogita is a member of multiple prestigious organizations, including the International Society of Indoor Air Quality and Climate (ISIAQ) and the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). She has been recognized for her contributions to building performance simulation and energy conservation, reflecting her commitment to sustainable practices. 🏆

Publication Top Notes

Manu, S., & Rysanek, A. (under review). A novel dataset of indoor environmental conditions in work-from-home settings. Building and Environment.

Manu, S., & Rysanek, A. (2024). A Co-Location Study of 87 Low-Cost Environmental Monitors: Assessing Outliers, Variability, and Uncertainty. Buildings, 14(9), Article 9. Link

Manu, S., et al. (2024). A state-of-the-art, systematic review of indoor environmental quality studies in work-from-home settings. Building and Environment, 111652. Link

Doctor-Pingel, M., et al. (2019). A study of indoor thermal parameters for naturally ventilated occupied buildings in the warm-humid climate of southern India. Building and Environment, 151, 1-14. Link

Manu, S., et al. (2019). Performance evaluation of climate responsive buildings in India – Case studies from cooling dominated climate zones. Building and Environment, 148, 136-156. Link

Gupta, R., et al. (2019). Customized performance evaluation approach for Indian green buildings. Building Research & Information, 47(1), 56–74. Link

Conclusion

Sanyogita Manu’s research on indoor environmental quality in work-from-home settings is both timely and significant. Her methodological rigor, publication record, and active participation in professional communities demonstrate her dedication to advancing knowledge in her field. While there are areas for improvement, her strengths strongly position her as a worthy candidate for the Best Researcher Award. Her work has the potential to influence policy and improve well-being in residential work environments, making her contributions invaluable in today’s context.

Ojong Ojong | Optimization and Control | Best Researcher Award

Dr Ojong Ojong | Optimization and Control | Best Researcher Award

Lecturer II and Ag. HoD Chemical Engineering at University of Calabar in Nigeria.

Engr. Dr. Ojong Elias Ojong is a distinguished Lecturer II in the Department of Chemical Engineering at the University of Calabar, Nigeria. Born on September 30, 1990, in Bendeghe/Ekiem, Cross River State, he is dedicated to advancing the field of chemical engineering through research and education. Ojong holds a B.Tech., M.Tech., and is currently pursuing a Ph.D. at Rivers State University. With a robust academic background and practical experience in industry, he is committed to fostering the next generation of engineers. Ojong is also actively involved in community services and professional associations, promoting collaboration and innovation in engineering.

Profile

Scopus

Strengths

  1. Academic Qualifications: Ojong has an impressive academic background, with a B.Tech (First Class) in Chemical Engineering, an M.Tech, and a Ph.D. in progress. His strong academic foundation sets him apart as a dedicated and capable researcher.
  2. Teaching Experience: With extensive teaching responsibilities over the past five years at the University of Calabar, he has proven his commitment to education and mentoring. His involvement in key chemical engineering courses demonstrates both depth and breadth in his teaching abilities.
  3. Research Output: Ojong has published several peer-reviewed articles in reputable journals, covering topics such as chemical kinetics, reactor functions, and heat exchanger modeling. His research has practical applications in engineering, as demonstrated by his work on the design and simulation of chemical plants and energy systems.
  4. Professional Engagement: Ojong has attended and presented at multiple national and international conferences, showcasing his research and staying updated on the latest trends in his field. This engagement in the broader academic community is a critical factor in research leadership.
  5. Awards and Scholarships: His scholarships, such as the Ph.D. Scholarship by Tetfund and the Agbami Undergraduate Scholarship, underscore his academic excellence and promise.
  6. Membership in Professional Bodies: Ojong is a Corporate Member of the Nigerian Society of Chemical Engineers and a COREN-registered engineer. This formal recognition within professional bodies highlights his commitment to adhering to high standards in engineering practice.

Areas for Improvement

  1. Research Citations: While Ojong has published significant research, his citation metrics on Google Scholar, Scopus, and ORCID are relatively modest, with h-index values of 1-2. Increasing his citation count through collaborative and impactful research could enhance his academic influence.
  2. International Collaboration: Strengthening collaborations with international researchers and participating in joint research projects could further improve the global impact of his work.

Education

Dr. Ojong Elias Ojong’s academic journey showcases a strong foundation in chemical engineering. He earned his B.Tech. in Chemical Engineering with first-class honors from Rivers State University in 2014. His passion for the field led him to pursue an M.Tech. at the same institution, which he completed in 2019. Currently, he is a Ph.D. candidate at Rivers State University, focusing on optimizing chemical processes. His educational endeavors are supported by notable scholarships, including a PhD Scholarship from Tetfund and an Agbami Scholarship during his undergraduate studies. Ojong’s dedication to academic excellence and continuous learning reflects his commitment to making significant contributions to chemical engineering.

Experience 

Engr. Dr. Ojong Elias Ojong has accumulated extensive teaching and industrial experience in chemical engineering. He began his academic career as an Assistant Lecturer at the University of Calabar in October 2019 and was promoted to Lecturer II in October 2021. His teaching responsibilities include various undergraduate courses such as Process Dynamics and Control, Chemical Reaction Engineering, and Thermodynamics. Ojong also supervises undergraduate projects, enhancing students’ practical skills. Prior to academia, he worked as a Graduate Trainee at Indorama Eleme Fertilizer and Chemicals Limited, gaining valuable industry insights. His experience is complemented by a National Youth Service Corps (NYSC) position at Erisco Food Nigeria Limited. Through his roles, he aims to bridge the gap between theoretical knowledge and practical application in the chemical engineering field.

Awards and Honors 

Dr. Ojong Elias Ojong’s academic achievements have been recognized through several prestigious awards and scholarships. In 2021, he received a PhD Scholarship from Tetfund, reflecting his research potential and commitment to advancing knowledge in chemical engineering. During his undergraduate studies, he was awarded the Agbami Scholarship, which further motivated his pursuit of academic excellence. These recognitions underscore his dedication to his field and his efforts to contribute meaningfully to engineering education and research. Ojong’s accolades not only highlight his personal achievements but also serve as an inspiration for his students and peers. His recognition in academia reinforces the importance of supporting and nurturing emerging talents in the engineering sector.

Research Focus 

Dr. Ojong Elias Ojong’s research interests center on optimizing chemical processes and control systems. His current Ph.D. research investigates advanced techniques in the performance evaluation of PID and fuzzy logic controllers for urea reactor functions. Ojong’s work aims to enhance efficiency and effectiveness in chemical engineering applications, particularly in process dynamics and control. He has published several articles in reputable journals, contributing to knowledge in areas such as naphtha reforming and corrosion effects in chemical systems. His research not only addresses theoretical challenges but also emphasizes practical solutions that can be implemented in industrial settings. Dr. Ojong is committed to fostering innovation in chemical engineering through his research and collaborative projects.

Publication Top Notes

  • Resolving systems of ordinary differential equations in naphtha reforming process: Comparison of laplace transform and numerical methods. 📊
  • Estimation of Kinetic Parameters of Naphtha Lump Feeds. 📈
  • Design of Engineering Project Planning Software: A case Study. 💻
  • Two-way ANOVA for comparison of remedial nutrient solution and enhanced natural attenuation using SPSS for treating petroleum contaminated soils. 🧪
  • Mathematical modelling of operating temperature variations of shell-tube-heat exchanger (10-E-01). 🔥
  • Validation of MATLAB algorithm to implement a two-step parallel pyrolysis model for the prediction of maximum % char yield. ⚙️
  • Effect of Surface Finish on Corrosion and Microstructure of Carbon Steel-(C-1020) and Stainless Steel-(SS304). 🛠️
  • The Use of Models to Evaluate Corrosion Effects on Mild Steel Heat Exchanger in Water and Mono Ethanol Amine (MEA). 🌊

Conclusion

Ojong Elias Ojong’s academic achievements, research output, and professional activities make him a strong contender for the Best Researcher Award. His diverse work in chemical engineering, teaching experience, and research productivity highlight his dedication to advancing both the academic and practical aspects of his field.

Dalia El- Gazzar | Vibration and Dynamics | Best Researcher Award

Dr Dalia El- Gazzar | Vibration and Dynamics | Best Researcher Award

Dr Dalia El- Gazzar, National water research center, Egypt

Dr. Dalia Mohamed Sadek El-Gazzar is an accomplished expert in mechanical and electrical engineering with over 24 years of experience at the Mechanical & Electrical Research Institute (MERI). Specializing in optimizing hydro-electro-mechanical systems, her work has significantly advanced predictive maintenance and dynamic analysis of pumping stations. She holds a Ph.D. in Mechanical Engineering from Menoufia University and has contributed extensively to technical research and education, including teaching advanced courses on vibration analysis and predictive maintenance. Her dedication to improving the performance and reliability of drainage and irrigation systems underscores her commitment to engineering excellence.

Publication Profile

Scopus

Strengths for the Award

  1. Extensive Experience: Dalia Mohamed Sadek El-Gazzar has over 24 years of experience at the Mechanical & Electrical Research Institute (MERI), focusing on optimizing the operation and performance of hydro-electro-mechanical components in drainage and irrigation systems. This long-standing experience is a strong point for the award.
  2. Leadership Roles: She has held significant leadership roles, such as Director Deputy and Head of the Mechanical Department at MERI. Additionally, she has led multiple research projects related to dynamic analysis and quality control in irrigation and drainage systems.
  3. Research Contributions: Dalia has published numerous papers in reputable journals, highlighting her contributions to improving the dynamic performance and reliability of pumping systems. Her work in vibration analysis and preventive maintenance is particularly noteworthy.
  4. Educational Background: With a Ph.D. in Mechanical Engineering focused on vibration analysis of pumping systems, coupled with an M.Sc. and B.Sc. in related fields, her strong academic background supports her candidacy.
  5. Technical Expertise: Dalia has technical expertise in areas such as structural and mechanical vibration, fault detection, dynamic and hydraulic assessment, and preventive maintenance of rotating machinery.
  6. Conferences and Workshops: Her participation in a wide range of international conferences and workshops demonstrates her active involvement in the research community and her commitment to continuous learning and dissemination of knowledge.

Areas for Improvement

  1. Broader Impact: While her work is highly specialized in the field of mechanical and electrical systems for water resources, expanding her research to broader applications or interdisciplinary studies might enhance her impact and visibility within the research community.
  2. International Collaboration: Although she has participated in international conferences, increasing collaboration with international researchers or institutions could strengthen her research portfolio and provide diverse perspectives.
  3. Innovation and Patents: Emphasizing innovation through the development of new technologies or securing patents could further distinguish her work and contribute to practical advancements in her field.

Education

Dr. Dalia Mohamed Sadek El-Gazzar earned her Ph.D. in Mechanical Engineering from Menoufia University in February 2012, with a focus on vibration analysis of pumping systems with variable speed drives. She completed her M.Sc. in April 2004, studying the impact of bearing faults on dynamic behavior and power consumption in water pumps. Her B.Sc., obtained in May 1999, was in Production Engineering and Mechanical Design from the same institution. Her academic background has laid a strong foundation for her expertise in vibration analysis and predictive maintenance.

Experience

Dr. El-Gazzar’s professional journey spans over two decades, with roles including Director Deputy and Head of the Mechanical Department at MERI. She has led critical research projects on dynamic analysis and quality control in irrigation and drainage systems. Her experience includes hands-on inspection, calibration, and dynamic assessment of pumping stations. She has also contributed to numerous technical investigations and reports, enhancing system performance and reliability. Her role as an educator has involved teaching advanced engineering courses and training international engineers.

Research Focus

Dr. El-Gazzar’s research focuses on the dynamic performance and reliability of hydro-electro-mechanical systems in irrigation and drainage. Her work extensively covers vibration analysis, predictive maintenance, and fault diagnosis of pumping stations. She has explored the effects of variable speed drives, bearing faults, and structural vibrations on system efficiency. Her studies aim to optimize system performance, enhance reliability, and contribute to sustainable water resource management. Her research has significantly advanced the understanding and application of dynamic analysis in improving engineering practices.

Publication Top Notes

“Enhancing Efficiency and Dynamic Performance of Bearings in Pumping Stations” 📈

“Dynamic Performance Application of A Variable Speed Centrifugal Pump” 🚀

“Effect of Critical Speed on the Dynamic and Hydraulic Performance of a Variable Speed Pump” 🔧

“Vibration Analysis of Centrifugal Pump with Variable Speed Drives” ⚙️

“Evaluating Efficiency and Safety of Aerators in a Sanitary Drainage Station Using Vibration Analysis” 🔍

“Investigate the Effect of Fan Configuration on the Performance of Aeration Units for Waste Water Treatment” 💧

“Effect of Motor Vibration Problem on the Power Quality of Water Pumping Stations” ⚡

Conclusion

Dalia Mohamed Sadek El-Gazzar is a highly qualified candidate for the Best Researcher Award, given her extensive experience, leadership roles, and significant contributions to research in the field of mechanical and electrical systems for water resources. Her work has made valuable improvements in the performance and reliability of irrigation and drainage systems. While there is room for expanding her research’s impact and international collaboration, her current achievements make her a strong contender for the award.

 

Christos Mytafides | Materials Engineering Award | Excellence in Innovation

Dr Christos Mytafides | Materials Engineering Award | Excellence in Innovation

Dr Christos Mytafides , University of Ioannina, Greece

Christos Mytafides is a distinguished researcher in advanced multifunctional materials and energy-harvesting technologies. Born on July 14, 1985, in Xanthi, Greece, he currently resides in Chania, Crete. Christos earned his Ph.D. from the University of Ioannina, focusing on printed electronics and energy-harvesting composites. His work is well-regarded for its innovation in integrating advanced materials into structural composites. He has held various roles, including Postdoctoral Research Scientist at Technical University of Crete and R&D Engineer at ARCO/Murray. Christos has been a Fulbright Scholar at the University of Miami and has collaborated with leading institutions like Eindhoven University of Technology. His research has led to multiple publications and patents, and he continues to push the boundaries of material science and sustainability.

Publication Profile

Google Scholar

Education

Christos Mytafides holds a Ph.D. in Materials Science & Engineering from the University of Ioannina, where he specialized in advanced multifunctional energy-harvesting materials (2018-2023). His Master’s Degrees include one in Advanced Materials from the University of Ioannina (2016-2018), focusing on optoelectronic and magnetic materials, and another in Environmental Engineering & Science from Democritus University of Thrace (2013-2015), emphasizing energy-efficient designs. He also has a Bachelor’s Degree in Structural Engineering from the International Hellenic University (2003-2009), where he studied structural analysis and restoration. Additionally, Christos completed online courses in Quantum Physics, Sustainable Energy, and other relevant fields from prestigious institutions like Stanford and MIT. His comprehensive education reflects a strong foundation in both theoretical and applied aspects of materials science and engineering.

Experience 

Christos Mytafides has a diverse professional background in materials science and engineering. Currently a Postdoctoral Research Scientist at Technical University of Crete, he works on advanced composite materials. Previously, he served as a Research & Development Engineer at ARCO/Murray, focusing on structural and sustainability engineering. He was involved in several projects at the University of Ioannina, including Horizon 2020 and NSRF projects related to energy harvesting and smart materials. Christos also gained valuable experience during his Fulbright Scholarship at the University of Miami, researching multifunctional composites. His work as a Lab Assistant and Teaching Assistant at various universities, including Eindhoven University of Technology and Democritus University of Thrace, further underscores his expertise in both research and education. His experience spans across different research laboratories and practical engineering roles, reflecting a robust career in material science.

Awards and Honors

Christos Mytafides has received significant recognition for his contributions to materials science and energy-harvesting technologies. He was awarded the Fulbright Scholarship for his research at the University of Miami, which highlights his innovative work in multifunctional composites. His research has been recognized in various prestigious journals, underscoring the impact of his contributions to advanced materials and energy-harvesting technologies. Christos has also been involved in notable projects such as Horizon 2020 and NSRF, further cementing his reputation in the field. His work on advanced composites and energy-harvesting materials has earned him several accolades, including publication in high-impact journals like Materials Advances and Journal of Power Sources. His commitment to advancing the field of materials science is reflected in the numerous awards and honors he has received throughout his career.

Research Focus 

Christos Mytafides’s research focuses on advanced multifunctional materials and energy-harvesting technologies. His work primarily explores the integration of printed electronics with structural composites to develop innovative energy-harvesting solutions. He is particularly interested in developing and characterizing materials that can efficiently convert and store energy. His research includes the design and fabrication of high-performance solar cells, thermoelectric generators, and other energy-harvesting devices. Christos’s work also encompasses optoelectronic and magnetic materials, with applications in sustainable energy systems and smart textiles. His contributions to the field have led to significant advancements in the efficiency and functionality of composite materials. By combining theoretical knowledge with practical applications, Christos aims to push the boundaries of materials science and engineering, addressing contemporary challenges in energy sustainability and advanced material development.

Publication Top Notes

“A hierarchically modified fibre-reinforced polymer composite laminate with graphene nanotube coatings operating as an efficient thermoelectric generator” 🌐 Energy Advances, 2024

“Integrated architectures of printed electronics with energy-harvesting capabilities in advanced structural composites” 📚 University of Ioannina, 2023

“Carbon fiber/epoxy composite laminates as through-thickness thermoelectric generators” 🛠️ Composites Science and Technology, 2023

“Fully printed and flexible carbon nanotube-based thermoelectric generator capable for high-temperature applications” ⚡ Journal of Power Sources, 2022

“Printed single-wall carbon nanotube-based Joule heating devices integrated as functional laminae in advanced composites” 🔬 ACS Applied Materials & Interfaces, 2021

“A high performance flexible and robust printed thermoelectric generator based on hybridized Te nanowires with PEDOT: PSS” 🔋 Applied Energy, 2021

Hengyu Liu | Geotechnical Engineering Award | Best Researcher Award

Mr Hengyu Liu | Geotechnical Engineering Award | Best Researcher Award

Mr Hengyu Liu, School of Resources and Safety Engineering, Central South University, China

Hengyu Liu is a PhD candidate specializing in Geotechnical Engineering at Central South University. His research focuses on the intelligent prediction and management of geological hazards in mining environments. Liu has authored multiple papers in esteemed journals and conferences, showcasing his expertise in data-driven modeling and simulation of slope stability and rock mechanics. He holds patents and software copyrights related to mining safety technologies, underscoring his innovative contributions to the field. Liu actively participates in national research projects and has presented his work internationally, demonstrating his commitment to advancing safety engineering in resource extraction.

Publication Profile

Orcid

Education

Hengyu Liu is pursuing his PhD in Safety Engineering at Central South University. His academic journey began in 2019, focusing on civil engineering with a specialization in Geotechnical Engineering. Liu has consistently excelled academically, leveraging his expertise to explore predictive modeling techniques for assessing geological risks in mining contexts. His educational background is complemented by practical experiences in software development and patent innovations aimed at enhancing safety measures in mining operations.

Experience 

Hengyu Liu has extensive research experience in the field of Geotechnical Engineering, particularly in the application of advanced modeling techniques to predict and mitigate geological hazards. He has authored and co-authored several papers published in prestigious journals like “Nature Communications” and “Applied Sciences,” highlighting his contributions to the understanding of slope stability, rock mechanics, and landslide prediction. Liu has also led and participated in national research projects focusing on slope deformation in open-pit mines, demonstrating leadership and collaborative skills in multidisciplinary environments. His work includes the development of simulation platforms and the implementation of innovative technologies to improve safety standards in mining practices.

Research focus

Hengyu Liu’s research centers on the intelligent prediction and management of geological hazards in mining environments. He specializes in leveraging data-driven approaches and advanced modeling techniques such as deep learning and optimization algorithms to analyze and forecast slope stability, rockburst intensity, and landslide risks. Liu’s work aims to enhance safety protocols and operational efficiencies in mining operations through predictive analytics and simulation platforms. His research contributes significantly to the field of Geotechnical Engineering, addressing critical challenges in resource extraction while advocating for sustainable and safe mining practices.

Publication Top Note

“Deep learning in rockburst intensity level prediction: performance evaluation and comparison of the NGO-CNN-BiGRU-Attention model” 📚

Dawit Alemayehu | Biomechanical Engineering Award | Best Researcher Award

Mr Dawit Alemayehu | Biomechanical Engineering Award | Best Researcher Award

Mr Dawit Alemayehu, Hokkaido university , Japan

Dawit Bogale Alemayehu is a dedicated researcher pursuing his PhD in Biomechanical Design at Hokkaido University, Japan, expected to graduate in September 2024. With an MSc from Addis Ababa University and a BSc from Jimma University, Ethiopia, his research focuses on advanced engineering applications like biomimetic bone structures and energy absorption materials. Dawit has published extensively in international journals and presented his work at prestigious conferences worldwide. His expertise includes CAD modeling, finite element analysis, and experimental validation. Passionate about innovation, Dawit aims to integrate cutting-edge technologies for impactful solutions in biomechanics and materials science.

Publication Profile

Orcid

Education

Dawit Bogale Alemayehu’s academic journey spans across continents and disciplines. He pursued his BSc in Mechanical Engineering at Jimma University, Ethiopia, where he focused on designing thermal systems. His MSc at Addis Ababa University delved into mechanical design, specializing in low carbon steel dynamics. Currently, Dawit is on track to complete his PhD at Hokkaido University, Japan, in Aerospace and Mechanical Engineering. His doctoral research explores cutting-edge biomechanical engineering, aiming to enhance titanium alloys and biomimetic structures for bone and energy absorption applications. Dawit’s academic path reflects a dedication to advancing engineering solutions with global impact.

Professional Experience

Dawit Bogale Alemayehu has accumulated a diverse range of experiences in academia and research. He began his career as a Graduate Assistant and Assistant Lecturer at Bahir Dar University, Ethiopia, where he taught and supported laboratory classes in Mechanical Engineering. Dawit later transitioned to roles as a Lecturer, instructing courses such as Machine Drawing and Strength of Materials. His international experience includes positions as a Research Assistant at National Taiwan University of Science and Technology and National Cheng Kung University in Taiwan, where he contributed to CAD modeling, finite element analysis, and manuscript preparation. Currently, as a PhD Fellow at Hokkaido University, Japan, Dawit conducts cutting-edge research in biomechanical engineering, aiming to publish impactful findings in international journals and present at prestigious conferences.

Research Focus

Dawit Bogale Alemayehu’s research spans several prominent areas in engineering and materials science, focusing extensively on biomechanical and biomimetic engineering. His work explores innovative applications of advanced manufacturing techniques like Fused Filament Fabrication (FFF) to create bioinspired lattice structures for enhanced energy absorption. Additionally, he conducts Finite Element Analysis (FEA) studies to optimize dental implants with biomimetic trabecular bone designs. Alemayehu’s research also delves into improving the biological and mechanical properties of materials such as pure titanium through processes like Equal Channel Angular Pressing (ECAP) and Micro-Arc Oxidation. His contributions emphasize the intersection of engineering innovation and biomedical applications, aiming to advance both theoretical understanding and practical applications in these fields. 🌟

Publication Top Notes