Young Min JO | Environmental engineering | Environmental Engineering Award

Prof . Young Min JO | Environmental engineering | Environmental Engineering Award

Professor, Kyung Hee University, South Korea

Dr. Young Min Jo is a Professor at the Department of Environmental Engineering at Kyung Hee University in South Korea. With a career spanning over two decades, he has made significant contributions to environmental science, particularly in air pollution control and indoor air quality. His expertise includes dust filtration, CO2 capture, odor and VOC control, and energy material synthesis. Dr. Jo holds a Ph.D. in Chemical Engineering from the University of New South Wales, Australia, and has worked as a researcher and professor at various renowned institutions globally. He is also an active participant in environmental policy discussions, serving in various leadership roles in professional societies such as the Korean Society of Odor Environment. Dr. Joโ€™s commitment to research and teaching has earned him numerous accolades and recognition in the field of environmental engineering.

Profile:

Orcid

Scopus

Education:

Dr. Young Min Jo completed his academic journey with a focus on Chemical Engineering. He earned his Ph.D. in Chemical Engineering from the University of New South Wales (UNSW), Australia, in 1997. Prior to this, he obtained both his M.S. (1986) and B.S. (1984) degrees from Korea University, where he specialized in Chemical Engineering. His strong academic background laid the foundation for his future career in environmental science and engineering, where he has contributed to research, education, and policy. Throughout his education, Dr. Jo was exposed to a diverse range of topics that span chemical engineering and environmental sustainability, with a particular emphasis on air pollution control and energy systems. His education at leading institutions has provided him with the theoretical and practical knowledge necessary to address pressing environmental challenges.

Experience:

Dr. Young Min Jo has extensive experience in both academia and research. He has been a Professor at Kyung Hee University, South Korea, since 1998, shaping the next generation of environmental engineers. His academic journey also includes prestigious international roles, such as a Visiting Fellow at the Toyama National Institute of Technology (2014-2015) and a Visiting Researcher at the University of Missouri at Rolla (2005-2006). Dr. Joโ€™s early career includes research positions at the Environmental Research Center of National University of Singapore (1997-1998) and the Center for Particle & Catalysis at UNSW (1996). He also worked as a researcher at Daewoo Electronics Ltd., Korea (1986-1991), contributing to industrial applications. Throughout his career, Dr. Jo has collaborated on various international projects and research initiatives, earning recognition for his expertise in environmental pollution control, air quality, and sustainable energy solutions.

Awards and Honors:

Dr. Young Min Jo has earned several accolades for his contributions to environmental engineering. As Vice President of the Korean Society of Odor Environment (2022-present), he has led initiatives to address odor-related environmental concerns. He served as the Chairman of i-CIPEC (2019-2020), further solidifying his leadership in the environmental field. Dr. Jo has also been a Director of the Center for Environmental Studies (2018-2021) and the Environmental Education Center of Gyeonggi-do (2018-2019), demonstrating his commitment to environmental education and public awareness. In addition, he holds a Senior Consultant position at the National Institute of Environment Research (2017-present) and serves as an Advisory Member of the Korea Air Cleaning Association. These roles reflect his ongoing influence in shaping environmental policy and research in South Korea, earning him recognition for his expertise in air quality and pollution control.

Research Focus:

Dr. Young Min Jo focuses on environmental challenges, with a particular emphasis on air pollution control, indoor air quality monitoring, and energy material synthesis. His research encompasses a variety of topics, including dust filtration, CO2 capture, and odor & VOC control, which are crucial for mitigating pollution in urban environments. He also investigates the health implications of particulate matter and its effects on indoor environments, including classroom air quality. Another key area of his research is the synthesis of sustainable energy materials that can contribute to cleaner, more efficient energy solutions. Dr. Joโ€™s work on activated carbon materials, particularly bamboo-based activated carbon for CO2 adsorption, highlights his efforts to develop sustainable solutions for indoor air quality. His interdisciplinary approach integrates environmental engineering, materials science, and health sciences, offering valuable insights into improving air quality and sustainability in both indoor and outdoor environments.

Publication Titles :

  1. Correlation between carbonaceous materials and fine particulate matters in urban school classrooms ๐Ÿ“š๐Ÿ’จ
  2. Effects of surrounding environment and student activity on the concentration of particulate matter in elementary school classrooms in South Korea ๐Ÿซ๐ŸŒซ๏ธ
  3. Synthesis of Hydroxylammonium Nitrate and Its Decomposition over Metal Oxide/Honeycomb Catalysts โš—๏ธ๐Ÿ’ฅ
  4. Fabrication of Bamboo-Based Activated Carbon for Low-Level CO2 Adsorption toward Sustainable Indoor Air ๐ŸŒฑ๐ŸŒ€
  5. Preparation and Characterization of Bamboo-based Activated Carbon for Low-level CO2 Adsorption ๐Ÿƒ๐Ÿงช
  6. Subchronic pulmonary toxicity of ambient particles containing cement productionโ€“related elements ๐Ÿ’จโš ๏ธ
  7. Removal of Ammonia, Hydrogen Sulfide, and Methyl Mercaptan as Livestock Odor Using a Low-energy (0.2 MeV) Electron Beam Accelerator ๐Ÿ„๐Ÿ’จ
  8. Air Quality Index through Inverse Evaluation of Hazard Quotient for Public Indoor Facilities-schools, child daycare centers and elderly nursing homes ๐Ÿข๐Ÿซ
  9. Subway station dust-induced pulmonary inflammation may be due to the dysfunction of alveolar macrophages: Possible contribution of bound elements ๐Ÿš‡๐Ÿ’จ
  10. Ventilation strategy for simultaneous management of indoor particulate matter and airborne transmission risks โ€“ A case study for urban schools in South Korea ๐Ÿซ๐ŸŒ€

Ahmed Deabs | Mechanical Engineering | Best Researcher Award

Assoc Prof Dr. Ahmed Deabs | Mechanical Engineering | Best Researcher Award

Production Engineering and Mechanical Design, Faculty of Engineering, Shebin Elkom, Menoufia University, Egypt

Ahmed Deabs is a dedicated academic and mechanical engineer with a strong background in production engineering and mechanical design. Currently, he serves as a Lecturer at the Faculty of Engineering, Menofia University, and an Adjunct Lecturer at Delta Technological University, Egypt. Ahmed’s expertise spans across CAD, FEM, machine design, and vibration signal processing, making him a versatile educator and researcher in the field.

Publication Profile

 

Strengths for the Award:

  1. Academic and Teaching Excellence: Ahmed Deabs has a strong academic background with significant teaching experience in various engineering disciplines. His ability to teach over 20 different courses, ranging from “Machine Tool Design” to “Engineering Mechanics,” highlights his versatility and expertise in Production Engineering and Mechanical Design.
  2. Research Contributions: He has several publications in reputable journals and conferences, showcasing his research in areas like CAD, FEM, and parallel robots. His work on topics like “Computer Aided Design of Multi-Stage Gearboxes” and “Optimizing Vertical Pump Reliability” demonstrates his commitment to advancing engineering knowledge.
  3. Industrial and Practical Experience: Ahmedโ€™s involvement in industrial projects, including the design and supervision of mechanical systems like renewable electricity generation systems and industrial production lines, underscores his practical skills and ability to apply research in real-world scenarios.
  4. Technological Proficiency: His proficiency in various engineering and computer tools like SOLIDWORKS, AUTOCAD, MATLAB, and his certifications (e.g., CSWP, CSWA) further bolster his technical capabilities, making him a well-rounded candidate for the award.
  5. Community and Educational Outreach: Ahmed’s initiative in creating and managing free educational resources, including YouTube channels and forums, reflects his dedication to sharing knowledge and supporting the engineering community.

Areas for Improvement:

  1. Research Impact: While Ahmed has a solid number of publications, there could be a focus on increasing the impact and citation of his research. Engaging in more collaborative research projects and targeting high-impact journals could further elevate his academic profile.
  2. International Exposure: Expanding his research collaborations and academic presence internationally could enhance his recognition. Participation in more global conferences and partnerships with international researchers would be beneficial.
  3. Grant Acquisition: Increasing his involvement in competitive research projects and securing grants would demonstrate his capability to lead large-scale research initiatives, further supporting his candidacy for the award.

 

๐ŸŽ“ Education

Ahmed Deabs holds a solid academic foundation in engineering, beginning as a Demonstrator in the Production Engineering and Mechanical Design Department at Menofia University in 2012. He advanced to Assistant Lecturer in 2016 and became a Lecturer in 2022. He also began serving as an Adjunct Lecturer at Delta Technological University in 2023, broadening his teaching experience.

๐Ÿ› ๏ธ Experience

Ahmed has an extensive teaching portfolio, having taught over 20 different courses across various engineering disciplines. His experience includes supervising laboratories, contributing to accreditation projects, and participating in continuous improvement initiatives at Menofia University. His industrial work includes freelance mechanical design and supervising machine fabrication processes for Egyptian and Arabic companies.

๐Ÿ” Research Focus

Ahmedโ€™s research interests are diverse, including Computer-Aided Design (CAD), Finite Element Method (FEM), machine design, and parallel robots. He also explores advanced topics like artificial neural networks, deep learning, and vibration signal processing, contributing to the evolution of mechanical engineering.

๐Ÿ† Awards and Honors

Ahmed has been recognized for his contributions to engineering education and research, particularly through his involvement in continuous improvement projects and his role in updating laboratory instruments at Menofia University. He also holds several certifications, including SOLIDWORKS and AUTOCAD, reflecting his commitment to professional development.

๐Ÿ“„ Publications

“Computer Aided Design of Multi-Stage Gearboxes” โ€“ International Journal of Advanced Engineering and Global Technology (IJAEGT), Vol. 2, Issue 12, 2014. Cited by 11 articles Link to Publication

“Structural Modifications of 1K62 Engine Lathe Gearbox Casing” โ€“ International Journal of Advanced Engineering and Global Technology (IJAEGT), Vol. 3, Issue 2, 2015. Cited by 9 articles Link to Publication

“Parallel Robot – Review Article” โ€“ Journal of Engineering Science and Technology Review, 2021. Cited by 6 articles Link to Publication

“Assessment of Parallel Robot Dynamic Characteristics Using Experimental Modal Analysis and Finite Elements” โ€“ The First International Conference in Technological University Education and its Role in Industry, Energy and Environmental Conservation (ICCTU 2022), 2022. Cited by 3 articles Link to Publication

Optimizing Vertical Pump Reliability: Investigating Main Shaft Challenges through Integrated Design and Testing Strategies โ€“ Water Science, 2024. Cited by 5 articles Link to Publication

 

Conclusion:

Ahmed Deabs is a strong candidate for the Researcher Award, given his extensive academic, research, and industrial contributions. His commitment to education, both in the classroom and through online platforms, alongside his technical expertise, makes him a well-rounded and deserving nominee. Focusing on increasing the impact of his research and expanding his international collaborations could further strengthen his candidacy. Overall, his achievements and contributions make him a suitable contender for the award.