Juras Skardžius | Mechanics Engineering | Best Researcher Award

Dr. Juras Skardžius | Mechanics Engineering | Best Researcher Award

Juras Skardžius is an accomplished engineer with experience in the automotive industry. Specializing in MetrologX (CMM), Computer-Aided Design (CAD), SolidWorks/Pro-Engineer, reverse engineering, and APQP packages, Juras has a strong ability to turn complex designs into tangible parts. With certifications in AIAG Quality Core Tools, IATF Automotive standards, and ISO 9001 and 14001, Juras brings expertise in quality control, documentation, and feasibility studies. A proactive and continuously growing professional, he has contributed extensively to automotive engineering through both hands-on experience and research.

Profile

Orcid

Education

Juras Skardžius holds both a Bachelor’s (2012-2016) and a Master’s (2022-2024) degree in Transport Technology Science (Automobile Engineering) from the prestigious Vilnius Gediminas Technical University. His academic background provides him with in-depth knowledge of engineering principles and advanced techniques used in automotive technology. Throughout his studies, Juras focused on modernizing automotive manufacturing processes, including implementing sensor technologies to improve efficiency. His academic career has laid the foundation for his ongoing contributions to the automotive sector, integrating cutting-edge research with practical experience.

Experience

Juras Skardžius has a diverse career in the automotive sector, working for several companies where he honed his skills in project engineering, design, and quality control. He is currently employed at UAB Stansefabrikken Automotive, where he is responsible for new project documentation preparation, CMM programming, and product implementation. His experience also spans roles at UAB Baltexim as a designer and at UAB Forveda as a Service and Aftersale Manager. Juras’s hands-on roles in manufacturing processes and his ability to manage important clients has given him extensive exposure to various facets of the industry.

Research Focus

Juras Skardžius’s research focus lies in the modernization of automotive manufacturing processes. He has developed innovative methods for real-time part quality monitoring using stamping force in progressive stamping and has worked on tool modernization using sensor technologies. His research aims to optimize manufacturing efficiency, improve product quality, and reduce costs in automotive production. Juras is particularly interested in the integration of sensor technologies like eddy current and load sensors into stamping processes to enhance production accuracy and reliability. His work bridges the gap between theory and practice in automotive engineering.

Publication Top Notes

  1. Alternative Real-Time Part Quality Monitoring Method by Using Stamping Force in Progressive Stamping Process
    Journal of Manufacturing and Materials Processing 📚🔧

  2. Progressive Tool Modernization Using Sensor Technology in Automotive Parts Manufacturing
    TRANSBALTICA XIV: Transportation Science and Technology 🛠️⚙️

  3. Modernization of the Stamping Process Using Eddy Current and Load Sensors in the Manufacturing of Automotive Parts
    Eksploatacja i Niezawodność – Maintenance and Reliability 🏭📊

 

 

Federico Di Prospero | Thermal Energy Recovery | Mechanical Engineering Award

Dr. Federico Di Prospero | Thermal Energy Recovery | Mechanical Engineering Award

PhD student, University of L’Aquila, Italy

Federico Di Prospero is an aspiring mechanical engineer with a focus on sustainable energy and combustion technologies. He holds a Bachelor’s Degree in Industrial Engineering and a Master’s Degree in Mechanical Engineering from the University of L’Aquila, where he graduated with honors. Federico is currently pursuing a PhD in Industrial Engineering and has received his certification as an industrial engineer. His academic and research interests center around improving energy efficiency and reducing CO2 emissions in internal combustion engines. He has contributed to several international publications, reflecting his expertise and commitment to environmental engineering solutions.

Profile

Education

Federico completed his secondary education at Liceo Scientifico A.Bale in L’Aquila (2017). He then pursued a Bachelor’s Degree in Industrial Engineering at the University of L’Aquila, graduating in 2020. Continuing his academic journey, he completed a Master’s Degree in Mechanical Engineering at the same institution in 2023, earning the highest distinction with a 110 e Lode. His thesis focused on reducing CO2 emissions in internal combustion engines, specifically by integrating energy recovery systems through turbines downstream of the turbocharger. Currently, Federico is pursuing a PhD in Industrial Engineering and has obtained certification as a licensed Industrial Engineer. His academic path demonstrates a strong commitment to both technical and research excellence, particularly in sustainable engineering.

Experience

Federico has accumulated a diverse range of experiences in both academia and research. His early academic focus was on industrial engineering, but his passion for mechanical engineering led him to specialize in energy recovery technologies. During his Master’s studies, he worked on advanced research projects exploring turbocompound energy recovery and CO2 emissions reduction. Federico has also participated in prestigious seminars and conferences, including those related to internal combustion engine (M.C.I.) technologies and the H2ICE project. He gained valuable research experience in the School for Experimental Sciences at the Gran Sasso National Laboratories, where he worked on cutting-edge energy recovery technologies. His practical skills include advanced proficiency in software like CATIA V5, Ansys, Matlab, and R, as well as expertise in CAE and CAD tools. His experience aligns with his dedication to solving the modern challenges of energy sustainability and efficiency.

Research Focus

Federico Di Prospero’s research focuses on energy recovery systems and CO2 emission reduction in internal combustion engines (ICEs). His Master’s thesis explored the integration of turbocompound energy recovery systems to capture and reuse exhaust gases, ultimately improving engine efficiency and reducing harmful emissions. His ongoing doctoral research in Industrial Engineering builds upon these concepts, with an emphasis on sustainable energy solutions and the optimization of mechanical systems. Federico’s work integrates simulation tools such as Matlab, R, Ansys, and CATIA V5, and his expertise in computer-aided engineering and finite element analysis supports the development of more effective and eco-friendly engine technologies. By focusing on the environmental impacts of industrial technologies, his research seeks to advance energy recovery solutions for both the automotive and energy sectors. This work has the potential to play a pivotal role in advancing green technology in mechanical engineering.

Publication Top Notes

  1. Turbocompound Energy Recovery Option on a Turbocharged Diesel Engine (2023)
  2. Dual-Stage Energy Recovery from Internal Combustion Engines (2025)
  3. Model-Based Design of a Turbo-Compound Bottomed to Internal Combustion Engine Exhaust Gas (2023)

 

 

Farhad Zare | Biomechanics | Best Researcher Award

Mr. Farhad Zare | Biomechanics | Best Researcher Award

Graduated, Shiraz University, Iran

Farhad Zare is a Mechanical Engineer specializing in computational fluid dynamics (CFD) and biomechanics. With an academic background that includes a master’s degree from Shiraz University and a deep interest in drug delivery systems, his research aims to bridge the gap between theoretical simulations and real-world applications. Over the years, Farhad has demonstrated expertise in numerical simulations, fluid mechanics, and microfluidics. His focus on applying computational models in healthcare, especially in nasal drug delivery, showcases his interdisciplinary approach. Farhad is also passionate about mentoring students and sharing his knowledge through his educational YouTube channel, infinitycfd.

Profile

Orcid

Education

Farhad Zare completed his M.Sc. in Mechanical Engineering—Energy Conversion from Shiraz University (2015-2018), one of the top universities in Iran. His thesis focused on the numerical simulation of drug delivery in the human nasal cavity via a nasal spray device, earning him an excellent degree with a GPA of 3.57/4.0. Prior to this, he obtained his B.Sc. in Mechanical Engineering from Persian Gulf University (2010-2014), where he ranked in the top 10% of his class with a GPA of 3.53/4.0. During his undergraduate years, Farhad worked on the simulation of bed deformation in water channel flow with non-Newtonian deformable beds. His solid academic performance and strong technical background have laid the foundation for his research in fluid dynamics, biomechanics, and computational simulations.

Experience

Farhad Zare has accumulated significant experience in both research and practical applications of mechanical engineering. His numerical simulation projects include drug delivery systems, microfluidics, and the impact of surface roughness on flow characteristics in micro-channels. He has worked with advanced tools like Ansys Fluent, OpenFOAM, and SolidWorks, applying them to simulations of heat exchangers, helical geometries, and complex fluid flows. Farhad also has a solid track record as a mentor and teacher assistant, helping M.Sc. and B.Sc. students. His practical experience includes internships in piping design and maintenance for a sugar factory and water supply and sanitation systems. Additionally, Farhad has been active in the educational field through his YouTube channel, infinitycfd, where he shares his expertise in CFD with a wider audience.

Awards and Honors

Farhad Zare has received multiple accolades for his academic and extracurricular achievements. He was awarded full scholarships for both his graduate and undergraduate studies due to his excellent academic performance. Farhad’s commitment to excellence was recognized when he earned an excellent grade for his master’s thesis, a significant milestone in his educational journey. Additionally, he placed second in the provincial Kyokushin sport competition in Shiraz, Iran, which highlights his perseverance and discipline outside the academic realm. These awards reflect his dedication to both his professional field and personal development, positioning him as an outstanding candidate for future research endeavors and leadership roles in mechanical engineering and biomechanics.

Research Focus

Farhad Zare’s research interests revolve around computational fluid dynamics (CFD), biomechanics, and the simulation of particle and droplet dynamics. His focus includes analyzing the trajectory and fate of particles in complex flow systems, such as nasal drug delivery. He has developed advanced numerical models to study drug deposition in the human nasal cavity and microfluidic systems. His research in microfluidics and MEMS (micro-electromechanical systems) aims to optimize the design and functionality of medical devices, particularly in the realm of targeted drug delivery. Farhad also explores the interaction of surface roughness and airflow within micro-channels, contributing to advancements in both biomedical engineering and mechanical system optimization. By combining his knowledge of CFD, fluid mechanics, and biomechanics, Farhad aspires to make significant contributions to healthcare applications, including more efficient and effective drug delivery devices.

Publication Top Notes

  1. Optimized gravity-driven intranasal drop administration delivers significant doses to the ostiomeatal complex and maxillary sinus 🌿💉 Drug Delivery and Translational Research, 2023
  2. Targeted drug delivery to the inferior meatus cavity of the nasal airway using a nasal spray device with angled tip 💡🔬 Computer Methods and Programs in Biomedicine, 2022

 

 

Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto, Robert Bosch GmbH,  Germany

Ralston Pinto, born on October 31, 1994, in India, is a mechanical engineer specializing in modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. Currently pursuing a PhD at RWTH Aachen University in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, he focuses on predicting contact mechanics in manufactured cells. Ralston’s expertise extends to finite element methods, material subroutines, and automation using Python and MATLAB. He has also worked on process influences on sensing elements during his master’s thesis at Bosch and has substantial experience in project management from his tenure at Hamon Group in India. Ralston is driven by the challenge of solving real-time engineering problems and values environments that foster innovative thinking and professional growth.

Publication Profile

Orcid 

Education

Ralston Pinto is currently pursuing his PhD in Mechanical Engineering at RWTH Aachen University, with a project focused on modeling and simulation of SOFC contacts in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich. He holds a Master of Science in Mechanical Engineering from Rheinwaal University of Applied Sciences, where he studied process engineering, materials, and simulation, earning a final grade of 1.8. His master’s thesis focused on understanding process influences on crack failure modes in exhaust gas sensors. Ralston completed his Bachelor of Engineering in Mechanical Engineering from the University of Mumbai, specializing in structural mechanics, fluid mechanics, simulation and CAD, thermodynamics, and process engineering. His bachelor’s thesis involved designing and assembling a pedal-powered water purification vehicle to address water scarcity in rural India.

Experience 

Ralston Pinto is currently engaged in doctoral research at Robert Bosch GmbH in Bamberg, Germany, focusing on the modeling and simulation of SOFC contacts using finite element methods. His work involves investigating the pressures on Solid Oxide Cell contacts and developing material subroutines for anisotropic plasticity. Previously, he completed a master’s thesis at Bosch in Stuttgart, Germany, exploring crack failure modes in exhaust gas sensors. Ralston also interned at Bosch, working on developing protective coatings for sensor elements. His early career includes a position as an Assistant Project Engineer at Hamon Group in Mumbai, India, where he coordinated national-level power sector projects, managed resource allocation, and controlled production processes. His diverse experiences have equipped him with a unique understanding of both project management and hands-on engineering tasks.

Awards and Honors

Ralston Pinto has been recognized for his academic excellence and professional contributions. He received the Deutschland Stipendium from the Bundesministerium für Bildung und Forschung, awarded for his outstanding academic performance at Rheinwaal University of Applied Sciences. This prestigious scholarship is given to students who demonstrate exceptional academic achievements and social commitment. During his tenure at Bosch, Ralston was involved in significant research projects that led to the implementation of his findings in the field. His contributions to the modeling and simulation of SOFC contacts and process influences on sensor failure modes have been well-received in the scientific community. Ralston’s dedication to solving real-world engineering problems and his innovative approach to research have earned him accolades and recognition from both academic and professional circles.

Research Focus 

Ralston Pinto’s research primarily focuses on the modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. His doctoral thesis at RWTH Aachen University, in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, aims to predict the contact mechanics of manufactured cells, incorporating non-ideal aspects like tolerance distributions and uneven profiles. Ralston employs finite element methods, homogenization techniques, and anisotropic plasticity subroutines in his simulations. He also integrates Python and MATLAB for automation and data generation, utilizing machine learning methods for optimization. His master’s research at Bosch involved understanding process influences on crack failure modes in exhaust gas sensors, where he developed experimental methods and analyzed empirical data. Ralston’s broad research interests include computational fluid dynamics (CFD), materials science, process engineering, and the development of innovative solutions for real-world engineering challenges.

Publication Top Notes

A constitutive model for homogenized solid oxide cell contacts with dimensional tolerances

Homogenization of fuel cell interconnects to determine the contacting configuration in a stack

Ruixi Zhang | Mechanical Engineering Award | Best Researcher Award

Assist Prof Dr Ruixi Zhang | Mechanical Engineering Award | Best Researcher Award

Assist Prof Dr Ruixi Zhang, Nagoya University, Japan

Dr. Zhang Ruixi is an Assistant Professor in the Department of Micro-Nano Mechanical Science and Engineering at Nagoya University, Japan 🇯🇵. He earned his B.S. from Northeastern University, China 🇨🇳 in 2017, his M.S. from Nagoya University in 2020, and his Ph.D. from The University of Tokyo in 2023. His research focuses on carbon-based materials like Diamond-like Carbon (DLC) coatings and carbon nanotubes, exploring their tribological properties and structural characteristics 🧪. Dr. Zhang is a member of The Japan Society of Mechanical Engineers and the Japanese Society of Tribologists 🏅.

Publication Profile

Scopus

Education

Dr. Zhang Ruixi completed his B.S. in Mechanical Engineering and Automation at Northeastern University, Shenyang, China 🇨🇳, from September 2013 to July 2017. He then pursued his M.S. in the Department of Micro-Nano Mechanical Science and Engineering at Nagoya University, Japan 🇯🇵, from April 2018 to March 2020. Following this, he earned his Ph.D. in Bioengineering from The University of Tokyo, Japan 🇯🇵, from April 2020 to March 2023. Dr. Zhang’s academic journey reflects a strong commitment to advancing his expertise in engineering and nanotechnology 🧪.

Experience

Since April 2023, Dr. Zhang Ruixi has been serving as an Assistant Professor in the Department of Micro-Nano Mechanical Science and Engineering at Nagoya University, Japan 🇯🇵. In this role, he continues to contribute to advanced research in the fields of nanotechnology and engineering, focusing on the development and application of carbon-based materials 🧪. His position allows him to mentor students, lead cutting-edge projects, and collaborate with other experts in the field, fostering innovation and academic excellence 🌟.

Research Focus

Dr. Zhang Ruixi’s research primarily focuses on the development and characterization of carbon-based materials, particularly Diamond-like Carbon (DLC) coatings 🧪. His work investigates the tribological properties, such as friction and wear, of these materials under various conditions, including high temperatures. He also explores the synthesis and structural properties of one-dimensional hetero-nanotubes, such as boron nitride nanotubes. By employing advanced techniques like in situ reflectance spectroscopy, Dr. Zhang aims to enhance the performance and application of these materials in various engineering fields 🌟. His research contributes significantly to advancements in nanotechnology and materials science 🏅.