Ahmed Deabs | Mechanical Engineering | Best Researcher Award

Assoc Prof Dr. Ahmed Deabs | Mechanical Engineering | Best Researcher Award

Production Engineering and Mechanical Design, Faculty of Engineering, Shebin Elkom, Menoufia University, Egypt

Ahmed Deabs is a dedicated academic and mechanical engineer with a strong background in production engineering and mechanical design. Currently, he serves as a Lecturer at the Faculty of Engineering, Menofia University, and an Adjunct Lecturer at Delta Technological University, Egypt. Ahmed’s expertise spans across CAD, FEM, machine design, and vibration signal processing, making him a versatile educator and researcher in the field.

Publication Profile

 

Strengths for the Award:

  1. Academic and Teaching Excellence: Ahmed Deabs has a strong academic background with significant teaching experience in various engineering disciplines. His ability to teach over 20 different courses, ranging from “Machine Tool Design” to “Engineering Mechanics,” highlights his versatility and expertise in Production Engineering and Mechanical Design.
  2. Research Contributions: He has several publications in reputable journals and conferences, showcasing his research in areas like CAD, FEM, and parallel robots. His work on topics like “Computer Aided Design of Multi-Stage Gearboxes” and “Optimizing Vertical Pump Reliability” demonstrates his commitment to advancing engineering knowledge.
  3. Industrial and Practical Experience: Ahmed’s involvement in industrial projects, including the design and supervision of mechanical systems like renewable electricity generation systems and industrial production lines, underscores his practical skills and ability to apply research in real-world scenarios.
  4. Technological Proficiency: His proficiency in various engineering and computer tools like SOLIDWORKS, AUTOCAD, MATLAB, and his certifications (e.g., CSWP, CSWA) further bolster his technical capabilities, making him a well-rounded candidate for the award.
  5. Community and Educational Outreach: Ahmed’s initiative in creating and managing free educational resources, including YouTube channels and forums, reflects his dedication to sharing knowledge and supporting the engineering community.

Areas for Improvement:

  1. Research Impact: While Ahmed has a solid number of publications, there could be a focus on increasing the impact and citation of his research. Engaging in more collaborative research projects and targeting high-impact journals could further elevate his academic profile.
  2. International Exposure: Expanding his research collaborations and academic presence internationally could enhance his recognition. Participation in more global conferences and partnerships with international researchers would be beneficial.
  3. Grant Acquisition: Increasing his involvement in competitive research projects and securing grants would demonstrate his capability to lead large-scale research initiatives, further supporting his candidacy for the award.

 

🎓 Education

Ahmed Deabs holds a solid academic foundation in engineering, beginning as a Demonstrator in the Production Engineering and Mechanical Design Department at Menofia University in 2012. He advanced to Assistant Lecturer in 2016 and became a Lecturer in 2022. He also began serving as an Adjunct Lecturer at Delta Technological University in 2023, broadening his teaching experience.

🛠️ Experience

Ahmed has an extensive teaching portfolio, having taught over 20 different courses across various engineering disciplines. His experience includes supervising laboratories, contributing to accreditation projects, and participating in continuous improvement initiatives at Menofia University. His industrial work includes freelance mechanical design and supervising machine fabrication processes for Egyptian and Arabic companies.

🔍 Research Focus

Ahmed’s research interests are diverse, including Computer-Aided Design (CAD), Finite Element Method (FEM), machine design, and parallel robots. He also explores advanced topics like artificial neural networks, deep learning, and vibration signal processing, contributing to the evolution of mechanical engineering.

🏆 Awards and Honors

Ahmed has been recognized for his contributions to engineering education and research, particularly through his involvement in continuous improvement projects and his role in updating laboratory instruments at Menofia University. He also holds several certifications, including SOLIDWORKS and AUTOCAD, reflecting his commitment to professional development.

📄 Publications

“Computer Aided Design of Multi-Stage Gearboxes”International Journal of Advanced Engineering and Global Technology (IJAEGT), Vol. 2, Issue 12, 2014. Cited by 11 articles Link to Publication

“Structural Modifications of 1K62 Engine Lathe Gearbox Casing”International Journal of Advanced Engineering and Global Technology (IJAEGT), Vol. 3, Issue 2, 2015. Cited by 9 articles Link to Publication

“Parallel Robot – Review Article”Journal of Engineering Science and Technology Review, 2021. Cited by 6 articles Link to Publication

“Assessment of Parallel Robot Dynamic Characteristics Using Experimental Modal Analysis and Finite Elements”The First International Conference in Technological University Education and its Role in Industry, Energy and Environmental Conservation (ICCTU 2022), 2022. Cited by 3 articles Link to Publication

Optimizing Vertical Pump Reliability: Investigating Main Shaft Challenges through Integrated Design and Testing StrategiesWater Science, 2024. Cited by 5 articles Link to Publication

 

Conclusion:

Ahmed Deabs is a strong candidate for the Researcher Award, given his extensive academic, research, and industrial contributions. His commitment to education, both in the classroom and through online platforms, alongside his technical expertise, makes him a well-rounded and deserving nominee. Focusing on increasing the impact of his research and expanding his international collaborations could further strengthen his candidacy. Overall, his achievements and contributions make him a suitable contender for the award.

 

 

 

Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto, Robert Bosch GmbH,  Germany

Ralston Pinto, born on October 31, 1994, in India, is a mechanical engineer specializing in modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. Currently pursuing a PhD at RWTH Aachen University in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, he focuses on predicting contact mechanics in manufactured cells. Ralston’s expertise extends to finite element methods, material subroutines, and automation using Python and MATLAB. He has also worked on process influences on sensing elements during his master’s thesis at Bosch and has substantial experience in project management from his tenure at Hamon Group in India. Ralston is driven by the challenge of solving real-time engineering problems and values environments that foster innovative thinking and professional growth.

Publication Profile

Orcid 

Education

Ralston Pinto is currently pursuing his PhD in Mechanical Engineering at RWTH Aachen University, with a project focused on modeling and simulation of SOFC contacts in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich. He holds a Master of Science in Mechanical Engineering from Rheinwaal University of Applied Sciences, where he studied process engineering, materials, and simulation, earning a final grade of 1.8. His master’s thesis focused on understanding process influences on crack failure modes in exhaust gas sensors. Ralston completed his Bachelor of Engineering in Mechanical Engineering from the University of Mumbai, specializing in structural mechanics, fluid mechanics, simulation and CAD, thermodynamics, and process engineering. His bachelor’s thesis involved designing and assembling a pedal-powered water purification vehicle to address water scarcity in rural India.

Experience 

Ralston Pinto is currently engaged in doctoral research at Robert Bosch GmbH in Bamberg, Germany, focusing on the modeling and simulation of SOFC contacts using finite element methods. His work involves investigating the pressures on Solid Oxide Cell contacts and developing material subroutines for anisotropic plasticity. Previously, he completed a master’s thesis at Bosch in Stuttgart, Germany, exploring crack failure modes in exhaust gas sensors. Ralston also interned at Bosch, working on developing protective coatings for sensor elements. His early career includes a position as an Assistant Project Engineer at Hamon Group in Mumbai, India, where he coordinated national-level power sector projects, managed resource allocation, and controlled production processes. His diverse experiences have equipped him with a unique understanding of both project management and hands-on engineering tasks.

Awards and Honors

Ralston Pinto has been recognized for his academic excellence and professional contributions. He received the Deutschland Stipendium from the Bundesministerium für Bildung und Forschung, awarded for his outstanding academic performance at Rheinwaal University of Applied Sciences. This prestigious scholarship is given to students who demonstrate exceptional academic achievements and social commitment. During his tenure at Bosch, Ralston was involved in significant research projects that led to the implementation of his findings in the field. His contributions to the modeling and simulation of SOFC contacts and process influences on sensor failure modes have been well-received in the scientific community. Ralston’s dedication to solving real-world engineering problems and his innovative approach to research have earned him accolades and recognition from both academic and professional circles.

Research Focus 

Ralston Pinto’s research primarily focuses on the modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. His doctoral thesis at RWTH Aachen University, in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, aims to predict the contact mechanics of manufactured cells, incorporating non-ideal aspects like tolerance distributions and uneven profiles. Ralston employs finite element methods, homogenization techniques, and anisotropic plasticity subroutines in his simulations. He also integrates Python and MATLAB for automation and data generation, utilizing machine learning methods for optimization. His master’s research at Bosch involved understanding process influences on crack failure modes in exhaust gas sensors, where he developed experimental methods and analyzed empirical data. Ralston’s broad research interests include computational fluid dynamics (CFD), materials science, process engineering, and the development of innovative solutions for real-world engineering challenges.

Publication Top Notes

A constitutive model for homogenized solid oxide cell contacts with dimensional tolerances

Homogenization of fuel cell interconnects to determine the contacting configuration in a stack