Md Jaynul Abden | Building Energy Efficiency | Best Researcher Award

Dr. Md Jaynul Abden | Building Energy Efficiency | Best Researcher Award

Postdoctoral Research Fellow, Western Sydney University, Australia

MD Jaynul Abden is a Postdoctoral Research Fellow in Materials Engineering at Western Sydney University, with extensive expertise in advanced materials synthesis and processing. Specializing in energy storage, thermal management, aerospace, and mechanical engineering, his research has driven innovation in these fields since 2014. In addition to his research, he is committed to educating future engineers and has mentored students while delivering high-quality instruction. His career has involved collaborative projects that integrate sustainability and multifunctional material design, particularly focusing on energy-efficient building materials. Abden’s dedication to advancing material innovation is evident in his ongoing efforts to reduce environmental impacts through sustainable practices.

Profile

Education

MD Jaynul Abden holds a Doctor of Philosophy (PhD) in Material Engineering from Western Sydney University, Australia, where he developed novel form-stable composite phase change materials. His work has contributed significantly to advancements in thermal regulation for building applications. He also earned a Master of Philosophy (MPhil) in Material Science from Chittagong University of Engineering and Technology (CUET), Bangladesh, focusing on Al2O3-ZrO2 composites. In 2004, he completed his Master of Science (MS) in Physics with a high GPA of 3.60/4.00 and was awarded First Class Honors in his Bachelor of Science (BSc) degree in Physics from Chittagong University, Bangladesh. Abden’s academic background, combined with his research and teaching experience, enables him to blend deep technical knowledge with a practical approach to materials innovation.

Experience

MD Jaynul Abden has extensive experience as a researcher, educator, and academic mentor. He is currently serving as a Postdoctoral Research Fellow at Western Sydney University, where he leads cutting-edge research on sustainable and energy-efficient materials. His role involves investigating material properties, developing experimental models, and collaborating with industry partners. Prior to this, Abden worked as a Research Assistant, contributing to the development of energy-efficient concrete and solar roof tiles. As a Casual Teacher, he has also enhanced student engagement and academic performance through dynamic teaching methods. Earlier in his career, Abden served as an Assistant Professor and Lecturer at International Islamic University Chittagong, where he improved program participation and co-authored impactful research papers. His diverse roles reflect his versatility and dedication to advancing both research and education in materials engineering.

Awards and Honors

MD Jaynul Abden’s career is marked by numerous prestigious awards and recognitions. Notably, he received the Research Training Program Scholarship and the Australian Postgraduate Award in 2017, which supported his doctoral research. In 2023, he was awarded the CO2 Absorption for Magnesium Oxide Boards grant and the School Strategic Research Project award at Western Sydney University. Abden’s contributions to the scientific community have earned him Elsevier Reviewer Recognition in 2018. His merit-based scholarships, including those during his undergraduate and postgraduate studies, reflect his academic excellence. Additionally, Abden was awarded the Bangladesh Sena Kalyan Shongstha Merit Scholarship in 1999, further highlighting his early academic achievements. These honors demonstrate his dedication to research excellence, teaching, and innovation in materials engineering.

Research Focus

MD Jaynul Abden’s research focuses on enhancing material performance through the synthesis and processing of advanced materials for applications in energy storage, thermal management, aerospace, and mechanical engineering. He is particularly interested in the development of sustainable and energy-efficient materials, such as form-stable composite phase change materials (FSPCM) for thermal regulation in buildings. Abden’s work integrates energy simulations, lifecycle analysis, and multi-model comparisons to optimize material performance in real-world environments. His research has led to the development of innovative solutions, such as energy-efficient recycled concrete and solar roof tiles. By focusing on multifunctional materials, Abden aims to address complex technological challenges, improve energy efficiency, and reduce environmental impacts. His contributions to both academia and industry make him a key figure in advancing sustainable material solutions in construction and engineering sectors.

Publication Top Notes

  1. Physical Properties of Predicted Ti2CdN vs. Existing Ti2CdC MAX Phase: An Ab Initio Study 🔬🧑‍🔬

  2. Inclusion of Methyl Stearate/Diatomite Composite in Gypsum Board Ceiling for Building Energy Conservation 🏠🌍

  3. Multifunctional Hierarchical Graphene-Carbon Fiber Hybrid Aerogels for Strain Sensing and Energy Storage 💡⚡

  4. Improving Performance of Solar Roof Tiles by Incorporating Phase Change Material ☀️🏠

  5. Hierarchical Honeycomb Graphene Aerogels Reinforced by Carbon Nanotubes with Multifunctional Mechanical and Electrical Properties 🧪🔋

  6. Combined Use of Phase Change Material and Thermal Insulation to Improve Energy Efficiency of Residential Buildings 🏠🌞

  7. Microstructure and Mechanical Properties of 3YSZ Ceramics Reinforced with Al2O3 Particles 🏗️🧱

  8. Structural and Electrical Properties of Cu Substituted Ni–Cd Nanoferrites for Microwave Applications 📡💡

  9. Core-Shell Structured Graphene Aerogels with Multifunctional Mechanical, Thermal, and Electromechanical Properties 🧬🔧

  10. Pressureless Sintering and Mechanical Properties of Hydroxyapatite/Functionalized Multi-Walled Carbon Nanotube Composite 🦴💪

Agnieszka Pieniążek | Sustainability Award | Best Researcher Award

Dr Agnieszka Pieniążek | Sustainability Award | Best Researcher Award

Dr Agnieszka Pieniążek, Institute of Physics PAS , Poland

Agnieszka Pieniążek 🌟 is an Assistant Professor at the Institute of Physics PAS, Warsaw, Poland. She completed her doctoral studies in Physical Sciences and holds master’s degrees in Analytical Chemistry and Applied Physics from leading Polish universities. Agnieszka’s research focuses on wide bandgap semiconductors, perovskites, and nanostructures, exploring their optical and electronic properties. She has authored 22 SCI and Scopus indexed articles and holds a patent for quantum nanostructures. Recognized for her Outstanding Doctoral Dissertation by the Polish Society for Crystal Growth, she continues to contribute significantly to the field of materials science and semiconductor physics.

 

Publication Profile

Scopus

Education

Agnieszka Pieniążek pursued her academic journey with dedication and achievement. She completed her Doctoral Studies in Physical Sciences at the Institute of Physics PAS, Warsaw, Poland, spanning from October 2013 to June 2019. Prior to that, she earned a Master’s Degree in Analytical Chemistry from Maria Curie-Skłodowska University, Faculty of Chemistry, Lublin, Poland, during October 2008 to July 2013. Her educational foundation also includes a Master’s Degree in Applied Physics from the same university’s Faculty of Mathematics, Physics, and Computer Science, obtained between October 2007 and July 2012. 🎓

Awards

In June 2022, Agnieszka Pieniążek was honored with the Award from the Polish Society for Crystal Growth for her Outstanding Doctoral Dissertation titled “Local Optical Properties of ZnO Microrods Grown by Hydrothermal Method.” This prestigious accolade recognizes her exceptional research contributions in the field of crystal growth and semiconductor optics. Agnieszka’s dissertation delved into the intricate optical characteristics of ZnO microrods, cultivated through innovative hydrothermal techniques. Her work not only expands the understanding of semiconductor materials but also underscores her commitment to advancing scientific knowledge and applications in materials science. 🏆

Research Focus

Agnieszka Pieniążek 🌟 specializes in the research of wide bandgap semiconductors, perovskites, and nanostructures. Her work primarily revolves around investigating the optical and electronic properties of these materials, with a focus on understanding defects, structural dynamics, and their implications for optoelectronic applications. Through her studies, she explores topics such as the bandgap pressure coefficient in perovskite thin films, interdiffusion phenomena in semiconductor alloys, and the cathodoluminescence patterns of semiconductor microrods. Agnieszka’s contributions significantly advance the field of materials science, particularly in enhancing the efficiency and reliability of semiconductor devices for renewable energy and optoelectronics.