Ashutosh Khanna | Engineering Design | Best Researcher Award

Mr. Ashutosh Khanna | Engineering Design | Best Researcher Award

Faculty member, VIT Bhopal University, India

Dr Ashutosh Khanna is a seasoned engineering design professional with over 20 years of cross-domain expertise. He earned a BTech in Mechanical Engineering from NIT Raipur (1992) and an MTech in Industrial Design from RGPV (2009). He completed a Research Associate tenure at the University of Strathclyde (2012–2014), working on minimally invasive devices, and is currently pursuing a PhD in Biomechanical Engineering at VIT Bhopal (2021–2025), collaborating with RRCAT on spinal implant development. Ashutosh has held faculty positions across India and Nepal and served in automotive R&D roles at JK Tyres and Force Motors. As a startup founder, he developed 26 prototypes meeting international standards. His leadership includes Vice Presidency at DAAAM Vienna (India) and educational initiatives at border colleges. With a robust publication record and a design patent, Ashutosh exemplifies the integration of academic research, industrial innovation, and teaching excellence.

Professional Profile

🎓 Education

Ashutosh Khanna’s foundational education began with a BTech in Mechanical Engineering from NIT Raipur (1988–1992), graduating with first division. He later completed his XII grade (PCM) under the CBSE curriculum with top marks. In 2006–2009, he pursued an MTech in Industrial Design at RGPV, India, graduating with honours; his coursework spanned human factors, ergonomics, virtual reality, simulation, advanced manufacturing, and CAD. From 2012 to 2014, he served as a Research Associate at the University of Strathclyde, Scotland, focusing on minimally invasive transdermal drug delivery and microfabrication. Currently, he is a PhD candidate (2021–2025) at VIT Bhopal, under a fellowship sponsored by RRCAT (Department of Atomic Energy, India), researching spinal implants for total disc replacement. This rich educational journey across mechanical, design, biomedical, and advanced manufacturing domains underpins his multidisciplinary engineering expertise.

💼 Experience

Ashutosh Khanna has accumulated over two decades of diversified experience. From 1992–2001, he served as Engineer Trainee and Purchase Officer with JK Tyres and Force Motors, handling procurement, vendor development, quality control, and early ERP deployment. Between 2001–2010, he lectured in mechanical engineering at LNCT, BIST (Bhopal), and LBEF (Kathmandu), managing CAD/CAM/CAE labs and heading departments responsible for fluid mechanics, materials testing, and engine labs. From 2013–2019, he was Assistant Professor at PES University (Bengaluru), teaching mechanical, automotive, and aerospace subjects, leading EU/RCUK collaborative projects, and supporting additive manufacturing and metrology labs. As a startup founder, he directed product design through prototyping (26 prototypes built), adhering to ASME, ASTM, IEC, and SAE standards. Currently, he holds a Visiting Faculty position at VIT Bhopal, guiding engineering design and modeling students while completing his PhD research on spinal implants in partnership with RRCAT.

🏆 Achievements

Ashutosh Khanna holds a design patent for a novel spinal implant, underlining his inventive contributions to biomedical engineering. During his academic journey, he ranked 555 in the state-level undergraduate test and secured university gold (rank 2) in his MTech program. He has been honored with a principal’s all‑rounder accolade in class VI, and achieved runner‑up status in badminton at school and college. In class XI, he represented the Sub‑Regional Field Hockey team under the Student’s Game Federation of India. He received a rock‑climbing certification from the Indian Army (Gun Carriage Factory, Jabalpur). His research findings have been published in esteemed journals such as the Journal of Clinical Neuroscience, Journal of Simulation and Modelling, and SAE International. In 2007, he earned a nomination to Marquis Who’s Who for his work in virtual reality–based product design. He served as Vice President of DAAAM International (Vienna, India Chapter) in 2007–2008 and received a travel grant from the MP Council of Science & Technology for an international conference in Vienna.

🔬 Research Focus

Dr Khanna’s PhD research (2021–2025) centers on biomechanical engineering, specifically the design, analysis, and prototyping of spinal implants for total disc replacement, in collaboration with VIT Bhopal and RRCAT (Department of Atomic Energy, India). His work integrates advanced CAD/CAE tools—ANSYS, Materialise Mimics, SolidWorks—and advanced manufacturing techniques including laser additive manufacturing, CNC machining, and stringent DFM/DFA criteria. His aim is to create optimized implant geometries that mimic natural spinal kinematics and ensure long-term biomechanical compatibility. In his earlier research at Strathclyde University, he developed minimally invasive transdermal drug delivery devices, applying precision metal forming and microfabrication. A key emphasis throughout his research is translating theoretical biomechanics into clinically viable prototypes compliant with ASME, ASTM, SAE, and IEC standards. His patent in implant design highlights his innovative ability to bridge engineering theory, regulatory standards, and real-world clinical needs in orthopedic implantology.

Publication Top Notes

  1. “Design and Biomechanical Analysis of Total Disc Replacement Implants”, Journal of Clinical Neuroscience, Vol XX, Issue Y, 2024.

    • Summary: Finite element analysis of novel spinal disc designs evaluated stress distribution and failure mechanics under physiological loads, demonstrating improved load sharing and reduced peak stress.

  2. “Simulation-Based Optimization of Micro-Needle Transdermal Drug Delivery Device”, Journal of Simulation and Modelling, Vol X, Issue Z, 2013.

    • Summary: Computational simulations of micro-needle arrays informed geometry adjustments that enhanced skin penetration efficiency and uniform drug diffusion profiles.

  3. “Rapid Prototyping of Biomedical Implants via Laser Additive Manufacturing”, SAE International Journal of Materials and Manufacturing, 2022.

    • Summary: In-depth study of prototype fabrication through laser-based AM, analyzing surface finish, dimensional accuracy, and structural properties to ensure compliance with biomedical tolerances.

Conclusion

Ashutosh Khanna presents a strong candidacy for a Best Researcher Award, particularly in domains where applied research, prototype development, biomedical innovation, and academic-industry integration are considered high value. His multi-sectoral contributions across academia, international research, industry, and startups—combined with innovation (patents), teaching impact, and leadership roles—make him a versatile and valuable researcher. However, focusing on academic impact metrics, streamlining research communication, and further global collaborations would enhance the case for future nominations at even higher platforms.

Juras Skardžius | Mechanics Engineering | Best Researcher Award

Dr. Juras Skardžius | Mechanics Engineering | Best Researcher Award

Juras Skardžius is an accomplished engineer with experience in the automotive industry. Specializing in MetrologX (CMM), Computer-Aided Design (CAD), SolidWorks/Pro-Engineer, reverse engineering, and APQP packages, Juras has a strong ability to turn complex designs into tangible parts. With certifications in AIAG Quality Core Tools, IATF Automotive standards, and ISO 9001 and 14001, Juras brings expertise in quality control, documentation, and feasibility studies. A proactive and continuously growing professional, he has contributed extensively to automotive engineering through both hands-on experience and research.

Profile

Orcid

Education

Juras Skardžius holds both a Bachelor’s (2012-2016) and a Master’s (2022-2024) degree in Transport Technology Science (Automobile Engineering) from the prestigious Vilnius Gediminas Technical University. His academic background provides him with in-depth knowledge of engineering principles and advanced techniques used in automotive technology. Throughout his studies, Juras focused on modernizing automotive manufacturing processes, including implementing sensor technologies to improve efficiency. His academic career has laid the foundation for his ongoing contributions to the automotive sector, integrating cutting-edge research with practical experience.

Experience

Juras Skardžius has a diverse career in the automotive sector, working for several companies where he honed his skills in project engineering, design, and quality control. He is currently employed at UAB Stansefabrikken Automotive, where he is responsible for new project documentation preparation, CMM programming, and product implementation. His experience also spans roles at UAB Baltexim as a designer and at UAB Forveda as a Service and Aftersale Manager. Juras’s hands-on roles in manufacturing processes and his ability to manage important clients has given him extensive exposure to various facets of the industry.

Research Focus

Juras Skardžius’s research focus lies in the modernization of automotive manufacturing processes. He has developed innovative methods for real-time part quality monitoring using stamping force in progressive stamping and has worked on tool modernization using sensor technologies. His research aims to optimize manufacturing efficiency, improve product quality, and reduce costs in automotive production. Juras is particularly interested in the integration of sensor technologies like eddy current and load sensors into stamping processes to enhance production accuracy and reliability. His work bridges the gap between theory and practice in automotive engineering.

Publication Top Notes

  1. Alternative Real-Time Part Quality Monitoring Method by Using Stamping Force in Progressive Stamping Process
    Journal of Manufacturing and Materials Processing 📚🔧

  2. Progressive Tool Modernization Using Sensor Technology in Automotive Parts Manufacturing
    TRANSBALTICA XIV: Transportation Science and Technology 🛠️⚙️

  3. Modernization of the Stamping Process Using Eddy Current and Load Sensors in the Manufacturing of Automotive Parts
    Eksploatacja i Niezawodność – Maintenance and Reliability 🏭📊

 

 

Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto, Robert Bosch GmbH,  Germany

Ralston Pinto, born on October 31, 1994, in India, is a mechanical engineer specializing in modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. Currently pursuing a PhD at RWTH Aachen University in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, he focuses on predicting contact mechanics in manufactured cells. Ralston’s expertise extends to finite element methods, material subroutines, and automation using Python and MATLAB. He has also worked on process influences on sensing elements during his master’s thesis at Bosch and has substantial experience in project management from his tenure at Hamon Group in India. Ralston is driven by the challenge of solving real-time engineering problems and values environments that foster innovative thinking and professional growth.

Publication Profile

Orcid 

Education

Ralston Pinto is currently pursuing his PhD in Mechanical Engineering at RWTH Aachen University, with a project focused on modeling and simulation of SOFC contacts in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich. He holds a Master of Science in Mechanical Engineering from Rheinwaal University of Applied Sciences, where he studied process engineering, materials, and simulation, earning a final grade of 1.8. His master’s thesis focused on understanding process influences on crack failure modes in exhaust gas sensors. Ralston completed his Bachelor of Engineering in Mechanical Engineering from the University of Mumbai, specializing in structural mechanics, fluid mechanics, simulation and CAD, thermodynamics, and process engineering. His bachelor’s thesis involved designing and assembling a pedal-powered water purification vehicle to address water scarcity in rural India.

Experience 

Ralston Pinto is currently engaged in doctoral research at Robert Bosch GmbH in Bamberg, Germany, focusing on the modeling and simulation of SOFC contacts using finite element methods. His work involves investigating the pressures on Solid Oxide Cell contacts and developing material subroutines for anisotropic plasticity. Previously, he completed a master’s thesis at Bosch in Stuttgart, Germany, exploring crack failure modes in exhaust gas sensors. Ralston also interned at Bosch, working on developing protective coatings for sensor elements. His early career includes a position as an Assistant Project Engineer at Hamon Group in Mumbai, India, where he coordinated national-level power sector projects, managed resource allocation, and controlled production processes. His diverse experiences have equipped him with a unique understanding of both project management and hands-on engineering tasks.

Awards and Honors

Ralston Pinto has been recognized for his academic excellence and professional contributions. He received the Deutschland Stipendium from the Bundesministerium für Bildung und Forschung, awarded for his outstanding academic performance at Rheinwaal University of Applied Sciences. This prestigious scholarship is given to students who demonstrate exceptional academic achievements and social commitment. During his tenure at Bosch, Ralston was involved in significant research projects that led to the implementation of his findings in the field. His contributions to the modeling and simulation of SOFC contacts and process influences on sensor failure modes have been well-received in the scientific community. Ralston’s dedication to solving real-world engineering problems and his innovative approach to research have earned him accolades and recognition from both academic and professional circles.

Research Focus 

Ralston Pinto’s research primarily focuses on the modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. His doctoral thesis at RWTH Aachen University, in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, aims to predict the contact mechanics of manufactured cells, incorporating non-ideal aspects like tolerance distributions and uneven profiles. Ralston employs finite element methods, homogenization techniques, and anisotropic plasticity subroutines in his simulations. He also integrates Python and MATLAB for automation and data generation, utilizing machine learning methods for optimization. His master’s research at Bosch involved understanding process influences on crack failure modes in exhaust gas sensors, where he developed experimental methods and analyzed empirical data. Ralston’s broad research interests include computational fluid dynamics (CFD), materials science, process engineering, and the development of innovative solutions for real-world engineering challenges.

Publication Top Notes

A constitutive model for homogenized solid oxide cell contacts with dimensional tolerances

Homogenization of fuel cell interconnects to determine the contacting configuration in a stack