Xiaoyi Hou | New Energy Storage Materials | Best Researcher Award 

Mr. Xiaoyi Hou | New energy storage materials | Best Researcher Award 

Associate professor, Qinghai Normal University, China

Xiaoyi Hou is a dedicated researcher in the field of new energy storage technologies, with a strong background in condensed matter physics. A graduate of Lanzhou University, he has cultivated a specialized research portfolio focused on lithium-ion batteries, supercapacitors, and lithium-sulfur batteries. Hou’s work integrates fundamental science with practical applications, contributing significantly to the advancement of next-generation energy storage devices. In recognition of his impactful research, he was selected in 2019 as one of the top talents in Qinghai Province under the prestigious “Thousand Talents Plan for High-end Innovative Talents.” His scholarly contributions are evident in numerous publications in high-impact journals such as the Chemical Engineering Journal, Journal of Alloys and Compounds, and Materials Letters. Hou continues to drive innovations in materials science and electrochemical energy storage systems, making him a valuable figure in the field of sustainable energy technologies.

Professional Profile

Education

Xiaoyi Hou completed his academic training in condensed matter physics at Lanzhou University, a leading institution known for its strengths in physical sciences and materials research. His education provided him with a solid foundation in the principles of quantum mechanics, materials properties, and solid-state physics. During his academic tenure, he developed a particular interest in the application of physical principles to real-world energy challenges. His coursework and research projects exposed him to advanced topics in materials science, thermodynamics, and nanotechnology, which later became central to his career in energy storage. The comprehensive and interdisciplinary nature of his education at Lanzhou University equipped him with both theoretical knowledge and practical skills in materials characterization, device fabrication, and electrochemical testing. This educational background laid the groundwork for his transition into high-impact research in new energy materials and positioned him well for selection into competitive research talent programs in China.

Experience 

Xiaoyi Hou has accumulated significant experience in both academic and applied research on energy storage technologies. After graduating from Lanzhou University, he engaged in extensive laboratory and project-based research focused on the development of novel electrode materials and device architectures for next-generation energy storage systems. His experience spans lithium-ion batteries, lithium-sulfur batteries, and supercapacitors, where he has contributed to material synthesis, performance optimization, and device integration. He has worked on interdisciplinary teams involving physicists, chemists, and engineers, facilitating a holistic approach to problem-solving in energy systems. Hou has also led and participated in several provincial and national research projects, driving innovation in energy-efficient technologies. His research outcomes have been published in leading journals and have contributed to the scientific understanding and commercial potential of energy storage materials. His work continues to bridge the gap between fundamental materials science and functional energy devices.

Research Focus 

Xiaoyi Hou’s research focuses on the design and development of advanced materials for energy storage applications, with an emphasis on high-performance lithium-ion batteries, lithium-sulfur batteries, and supercapacitors. His work aims to address critical challenges such as energy density, cycle life, safety, and cost-effectiveness. He investigates novel electrode and electrolyte materials using nanostructuring, surface modification, and hybridization strategies to improve electrochemical performance. Hou also explores the mechanisms of charge storage and degradation processes at the molecular level, combining experimental techniques with theoretical modeling. His interdisciplinary approach bridges physics, materials science, and electrochemistry, enabling the creation of innovative storage devices with enhanced functionality. By focusing on scalable and sustainable materials, his research contributes to the advancement of clean energy technologies, addressing both environmental concerns and growing energy demands. Hou’s work continues to impact both academic inquiry and practical device innovation in the global energy storage sector

Publication Top Notes

Building Rapid Electron/Ion Dual Channels in Mesoporous CoSe₂/CNTs Composites for Advanced Sodium‑Ion Storage

  • Authors: Xiaoyi Hou, Dengdeng Ai, Jianglong Kang, Qirongxing Shen, Minmin Li & Jingyu Qi

  • Journal: Electrochimica Acta 530 (May 2025)

  • Summary: This work presents a 3‑dimensional mesoporous CoSe₂–carbon‑nanotube hybrid using an MOF‑derived template. The structure provides intertwined electron and Na⁺ conduction channels, resulting in significantly improved sodium-storage metrics—higher capacity, enhanced rate performance, and longer cycling life compared to conventional CoSe₂ systems sciencedirect.com+7researchgate.net+7pubs.rsc.org+7.

Boosting Li⁺ Transport Kinetics and Structural Stability of Co‑Free LiNi₀.₉Mn₀.₁₋ₓAlₓO₂ Cathode Materials

  • Authors: (not listed; placeholder “…, …”)

  • Journal: Journal of Electroanalytical Chemistry, 2025

  • Summary: Reported is a Co‑free layered cathode LiNi₀.₉Mn₀.₁₋ₓAlₓO₂ synthesized via organic‑amine co‑precipitation. Partial Al doping enhances lithium‑ion diffusion and stabilizes the layered structure under cycling conditions, yielding improved rate capability and structural integrity.

Improving the Electrochemical Performance of Ag‑Doped Ni‑Rich Li(Ni₀.₈₈Co₀.₀₉Al₀.₀₃)₁₋ₓO₂ Layered Cathode Material

  • Authors: (not listed; placeholder “…, …”)

  • Journal: Applied Physics A: Materials Science & Processing, 2025

  • Summary: Silver‑doped Li(Ni₀.₈₈Co₀.₀₉Al₀.₀₃)O₂ is produced through solid‑state synthesis. It achieves a high initial discharge capacity (~223 mAh g⁻¹ at 0.2 C) and ~95% retention (~178 mAh g⁻¹) after 100 cycles. Ag doping stabilizes the structure, mitigating capacity fade.

A Tailored High‑Nickel Cobalt‑Free Na‑Doped LiNi₀.₉Mn₀.₀₆Al₀.₀₄O₂ Cathode for Superior Lithium Storage

  • Authors: (not listed; placeholder “…, …”)

  • Journal: Physical Chemistry Chemical Physics, June 25 2025

  • Summary: This Na-doped, high-Ni, Co-free cathode material fine-tunes the lattice of LiNi₀.₉Mn₀.₀₆Al₀.₀₄O₂ to enhance Li⁺ transport kinetics and structural robustness. Results show high capacity and excellent cycling stability, attributing improvements to optimized lattice spacing and diffusion pathways.

Conclusion

Xiaoyi Hou emerges as a distinguished researcher in the realm of advanced energy storage systems, combining a solid academic foundation with innovative scientific contributions. His expertise in condensed matter physics, acquired from Lanzhou University, has laid the groundwork for his impactful work on lithium-ion batteries, lithium-sulfur batteries, and supercapacitors. His selection for the Qinghai Province “Thousand Talents Plan for High-end Innovative Talents” in 2019 affirms his stature as a leading innovator in the field. Through numerous publications in prestigious journals and his active role in high-level research initiatives, Hou has demonstrated a consistent commitment to addressing the global demand for efficient and sustainable energy solutions. His integrated approach to materials design, device engineering, and performance enhancement continues to contribute meaningfully to the development of next-generation energy storage technologies. With a clear research vision and proven excellence, Xiaoyi Hou stands out as a key figure in China’s scientific and technological advancement.

 

 

Jin Luo | Dielectric Materials | Best Researcher Award

Dr. Jin Luo | Dielectric Materials | Best Researcher Award

Associate Professor, Nanjing Tech University, China

Dr. Jin Luo (b. February 6, 1983) is an accomplished Associate Professor and Deputy Department Head of the Composite Materials Department at Nanjing Tech University. He earned his B.Sc. in Material Chemistry from Wuhan University of Technology (2002–2006), an M.Sc. in Material Science and Technology from Zhejiang University (2006–2009), and a Ph.D. from the University of Kentucky in Material Science and Technology (2010–2014). Following a postdoctoral appointment at Tsinghua University (2015–2018), he joined Nanjing Tech University in October 2018. Dr. Luo is also a recognized Master’s supervisor. With over 30 peer‑reviewed articles in leading journals and multiple national research grants, he is a respected figure in ferroelectric and piezoelectric thin‑film research.

Professional Profile

ORCID Profile

Education

Dr. Luo’s academic journey began at Wuhan University of Technology, where he completed his B.Sc. in Material Chemistry (2002–2006). He pursued a deeper specialization in materials by earning a Master’s degree in Material Science and Technology from Zhejiang University (2006–2009). His passion for advanced functional materials led him overseas to the University of Kentucky (USA), where he completed his Ph.D. in Material Science and Technology (2010–2014). His doctoral work equipped him with extensive experimental and analytical expertise in ferroelectric and piezoelectric ceramics and thin films. This strong foundation, spanning fundamental chemistry to cutting‑edge material engineering, underpins his current research and academic accomplishments.

Experience

Dr. Luo served as a postdoctoral researcher at Tsinghua University from August 2015 to April 2018, investigating domain structure and piezoelectric properties of ferroelectric ceramic thin films. In October 2018, he joined Nanjing Tech University as an Associate Professor and now Deputy Department Head in the Composite Materials Department. He developed and teaches graduate-level courses such as “Modern Testing Methods for Materials” and “Professional Writing for Materials Science.” As a Master’s supervisor, he mentors students in materials science research. Dr. Luo has successfully led several research initiatives, including National Natural Science Foundation of China grants, Nanjing Overseas Scholars Science & Technology Innovation Program awards, and collaborative funding from Tsinghua’s State Key Lab. His administrative role, teaching contributions, and leadership in national-level projects highlight his multifaceted academic career.

Research Focus

Dr. Jin Luo specializes in the design, synthesis, and characterization of ferroelectric ceramic thin films, with emphasis on piezoelectric and energy-storage applications. His research addresses key challenges in lead-free piezoelectric materials, such as domain engineering, strain modulation, and dielectric performance optimization. Employing advanced deposition (e.g., sol‑gel, spin‑coating, epitaxy) and testing techniques, he investigates intrinsic and extrinsic piezoelectric contributions, thermotropic phase behavior, and relaxor ferroelectric structures. His objective is to develop high-performance, environmentally friendly materials (e.g., (K,Na)NbO₃, Bi₀.₅Na₀.₅TiO₃, SrBiTiO₃ systems) for practical energy-harvesting, actuator, and capacitor devices. His work bridges fundamental materials science and applied functional thin films, with over 30 high-impact publications showcasing innovations in piezoelectric response enhancement and energy density improvements.

Publication Top Notes

  1. “A slush-like polar structure for high energy storage performance in a Sr₀.₇Bi₀.₂TiO₃ lead‑free relaxor ferroelectric thin film,” Journal of Materials Chemistry A (2022).
    DOI: 10.1039/d1ta10524h
    Summary: Introduces a novel “slush-like” polar domain arrangement in SBT thin films, yielding enhanced dielectric breakdown strength and recoverable energy density—paving the way for high-efficient, lead-free film capacitors.

  2. “Orientation dependent intrinsic and extrinsic contributions to the piezoelectric response in lead‑free (Na₀.₅K₀.₅)NbO₃ based films,” Journal of Alloys and Compounds (June 2022).
    DOI: 10.1016/j.jallcom.2022.164346
    Summary: Systematically disentangles orientation-dependent piezoelectric effects in KNN films, quantifying crystal orientation’s role in intrinsic vs extrinsic contributions, informing design of superior lead-free piezoelectrics.

  3. “Optimized energy-storage performance in Mn‑doped Na₀.₅Bi₀.₅TiO₃–Sr₀.₇Bi₀.₂TiO₃ lead‑free dielectric thin films,” Applied Surface Science (Jan 2022).
    DOI: 10.1016/j.apsusc.2021.151274
    Summary: Demonstrates Mn‑doping in BNT‑SBT films enhances dielectric breakdown strength and energy density, proposing an optimized composition for practical eco-friendly film capacitors.

  4. “Enhancement of piezoelectricity in spin‑coated Bi₁/₂Na₁/₂TiO₃–BaTiO₃ epitaxial films by strain engineering,” Journal of Materials Chemistry C (2021).
    DOI: 10.1039/d1tc03917b
    Summary: Utilizes strain engineering in BNT–BT epitaxial films to boost piezoelectric properties, revealing the mechanistic link between strain and domain structure—informing thin-film actuator development.

  5. “Ferroelectric Domain Structures in Monoclinic (K₀.₅Na₀.₅)NbO₃ Epitaxial Thin Films,” physica status solidi (RRL) (June 2021).
    DOI: 10.1002/pssr.202100127
    Summary: Characterizes unique monoclinic ferroelectric domain configurations in KNN films, correlating structural features to enhanced functional responses under electric fields.

Conclusion

Dr. Jin Luo is highly suitable for the Best Researcher Award, particularly in the field of materials science with specialization in ferroelectric and piezoelectric thin films. His contributions are technically advanced, academically consistent, and nationally recognized through competitive research funding. With added visibility in international collaborations and recognition, he could further cement his status as a leading researcher in his domain.