Young Min JO | Environmental engineering | Environmental Engineering Award

Prof . Young Min JO | Environmental engineering | Environmental Engineering Award

Professor, Kyung Hee University, South Korea

Dr. Young Min Jo is a Professor at the Department of Environmental Engineering at Kyung Hee University in South Korea. With a career spanning over two decades, he has made significant contributions to environmental science, particularly in air pollution control and indoor air quality. His expertise includes dust filtration, CO2 capture, odor and VOC control, and energy material synthesis. Dr. Jo holds a Ph.D. in Chemical Engineering from the University of New South Wales, Australia, and has worked as a researcher and professor at various renowned institutions globally. He is also an active participant in environmental policy discussions, serving in various leadership roles in professional societies such as the Korean Society of Odor Environment. Dr. Jo’s commitment to research and teaching has earned him numerous accolades and recognition in the field of environmental engineering.

Profile:

Orcid

Scopus

Education:

Dr. Young Min Jo completed his academic journey with a focus on Chemical Engineering. He earned his Ph.D. in Chemical Engineering from the University of New South Wales (UNSW), Australia, in 1997. Prior to this, he obtained both his M.S. (1986) and B.S. (1984) degrees from Korea University, where he specialized in Chemical Engineering. His strong academic background laid the foundation for his future career in environmental science and engineering, where he has contributed to research, education, and policy. Throughout his education, Dr. Jo was exposed to a diverse range of topics that span chemical engineering and environmental sustainability, with a particular emphasis on air pollution control and energy systems. His education at leading institutions has provided him with the theoretical and practical knowledge necessary to address pressing environmental challenges.

Experience:

Dr. Young Min Jo has extensive experience in both academia and research. He has been a Professor at Kyung Hee University, South Korea, since 1998, shaping the next generation of environmental engineers. His academic journey also includes prestigious international roles, such as a Visiting Fellow at the Toyama National Institute of Technology (2014-2015) and a Visiting Researcher at the University of Missouri at Rolla (2005-2006). Dr. Jo’s early career includes research positions at the Environmental Research Center of National University of Singapore (1997-1998) and the Center for Particle & Catalysis at UNSW (1996). He also worked as a researcher at Daewoo Electronics Ltd., Korea (1986-1991), contributing to industrial applications. Throughout his career, Dr. Jo has collaborated on various international projects and research initiatives, earning recognition for his expertise in environmental pollution control, air quality, and sustainable energy solutions.

Awards and Honors:

Dr. Young Min Jo has earned several accolades for his contributions to environmental engineering. As Vice President of the Korean Society of Odor Environment (2022-present), he has led initiatives to address odor-related environmental concerns. He served as the Chairman of i-CIPEC (2019-2020), further solidifying his leadership in the environmental field. Dr. Jo has also been a Director of the Center for Environmental Studies (2018-2021) and the Environmental Education Center of Gyeonggi-do (2018-2019), demonstrating his commitment to environmental education and public awareness. In addition, he holds a Senior Consultant position at the National Institute of Environment Research (2017-present) and serves as an Advisory Member of the Korea Air Cleaning Association. These roles reflect his ongoing influence in shaping environmental policy and research in South Korea, earning him recognition for his expertise in air quality and pollution control.

Research Focus:

Dr. Young Min Jo focuses on environmental challenges, with a particular emphasis on air pollution control, indoor air quality monitoring, and energy material synthesis. His research encompasses a variety of topics, including dust filtration, CO2 capture, and odor & VOC control, which are crucial for mitigating pollution in urban environments. He also investigates the health implications of particulate matter and its effects on indoor environments, including classroom air quality. Another key area of his research is the synthesis of sustainable energy materials that can contribute to cleaner, more efficient energy solutions. Dr. Jo’s work on activated carbon materials, particularly bamboo-based activated carbon for CO2 adsorption, highlights his efforts to develop sustainable solutions for indoor air quality. His interdisciplinary approach integrates environmental engineering, materials science, and health sciences, offering valuable insights into improving air quality and sustainability in both indoor and outdoor environments.

Publication Titles :

  1. Correlation between carbonaceous materials and fine particulate matters in urban school classrooms 📚💨
  2. Effects of surrounding environment and student activity on the concentration of particulate matter in elementary school classrooms in South Korea 🏫🌫️
  3. Synthesis of Hydroxylammonium Nitrate and Its Decomposition over Metal Oxide/Honeycomb Catalysts ⚗️💥
  4. Fabrication of Bamboo-Based Activated Carbon for Low-Level CO2 Adsorption toward Sustainable Indoor Air 🌱🌀
  5. Preparation and Characterization of Bamboo-based Activated Carbon for Low-level CO2 Adsorption 🍃🧪
  6. Subchronic pulmonary toxicity of ambient particles containing cement production–related elements 💨⚠️
  7. Removal of Ammonia, Hydrogen Sulfide, and Methyl Mercaptan as Livestock Odor Using a Low-energy (0.2 MeV) Electron Beam Accelerator 🐄💨
  8. Air Quality Index through Inverse Evaluation of Hazard Quotient for Public Indoor Facilities-schools, child daycare centers and elderly nursing homes 🏢🏫
  9. Subway station dust-induced pulmonary inflammation may be due to the dysfunction of alveolar macrophages: Possible contribution of bound elements 🚇💨
  10. Ventilation strategy for simultaneous management of indoor particulate matter and airborne transmission risks – A case study for urban schools in South Korea 🏫🌀

Edson Rodrigues-Filho | Environmental sciences | Excellence in Research

Prof. Edson Rodrigues-Filho | Environmental sciences | Excellence in Research

Prof, Federal University of São Carlos, Brazil

Edson Rodrigues-Filho is a distinguished Professor of Organic Chemistry at the Federal University of São Carlos (UFSCAR) in Brazil, where he has been a faculty member since 1992. Holding a degree in Chemistry from the University of Uberlândia (1986), followed by a Master’s (1989) and Doctorate (1992) in Chemistry from UFSCAR, Rodrigues-Filho also completed a postdoctoral fellowship in Plant Pathology at the University of Minnesota. He is a Productivity Scholar at CNPq and has made significant contributions in the field of natural product chemistry, focusing on microbial biosynthesis, biotransformation, and the synthesis of bioactive molecules. His extensive expertise is recognized through his work with fungal microorganisms, especially in antibiotic and insecticide production.

Profile

Education

Edson Rodrigues-Filho’s academic journey began with a Bachelor’s degree in Chemistry from the University of Uberlândia (1986). He continued at UFSCAR, completing his Master’s (1989) and Doctorate (1992) in Chemistry, specializing in the phytochemical analysis of species from the Simaroubaceae family. His doctoral research was funded by the National Council for Scientific and Technological Development (CNPq), exploring natural compounds with potential anticancer properties. After earning his Ph.D., Rodrigues-Filho enhanced his expertise with a postdoctoral research position at the University of Minnesota, focusing on plant pathology and microbial interactions. Over the years, he has expanded his academic and professional expertise, contributing to the scientific community through both teaching and research in organic chemistry, with a particular emphasis on natural products and microbial chemistry.

Experience

Edson Rodrigues-Filho has dedicated over three decades to academia, primarily at UFSCAR, where he has been a tenured professor since 1992. He has taught a variety of undergraduate and graduate courses in organic chemistry, including subjects such as Organic Chemistry, Analytical Chemistry, and Mass Spectrometry. Throughout his career, he has also held leadership roles within the university, including serving as Vice-Chair of the Chemistry Department and representing his faculty at various academic committees. His extensive research work has focused on the chemical properties of microorganisms, biotransformation processes, and the synthesis of bioactive natural products. Additionally, Rodrigues-Filho has worked on research projects with applications in biotechnology, health, and agriculture, contributing to the development of new antimicrobial agents and biocatalysts. He has also guided numerous graduate students, helping shape the next generation of scientists in his field.

Awards and Honors

Throughout his esteemed career, Edson Rodrigues-Filho has been recognized for his contributions to organic chemistry and natural product research. His work has been supported by prestigious research grants, including funding from the CNPq, Brazil’s National Council for Scientific and Technological Development. He has been a recipient of multiple academic honors, such as research scholarships in various fields related to chemistry and microbial sciences. His postdoctoral research at the University of Minnesota in plant pathology further expanded his international academic stature. Rodrigues-Filho’s impact extends to mentoring students and advancing research in the chemical sciences, which has earned him recognition at both the national and international levels. His involvement in major scientific projects in Brazil has helped advance research on microbial chemistry, biosynthesis, and biotransformation, underscoring his standing as a leading figure in the field of natural products.

Research Focus

Edson Rodrigues-Filho’s research focuses on natural product chemistry, with a particular emphasis on microbial biosynthesis, biotransformation, and the development of bioactive molecules. His work explores how microorganisms, particularly fungi and actinomycetes, produce compounds with potential applications in medicine, agriculture, and biotechnology. Rodrigues-Filho is deeply involved in studying the synthesis of natural products, such as antibiotics and insecticides, from microbial sources. He also investigates the chemical processes involved in the production of biologically active molecules and their subsequent modifications via biotransformation. His research further delves into the application of techniques such as mass spectrometry, chromatography, and nuclear magnetic resonance (NMR) spectroscopy to analyze and understand these complex compounds. Additionally, his interest in designing new synthetic routes for bioactive molecules has made significant contributions to the development of novel pharmaceutical and agricultural chemicals.

Publication Top Notes

  1. Antimicrobial Potential of Soil/Sediment Mangrove Associated Fungi: A Review 📚
  2. Perylenequinones production induced by co-culturing Setophoma sp. and Penicillium brasilianum 🌱
  3. Computational and pharmacological investigation of novel 1,5-diaryl-1,4-pentadien-3-one derivatives for analgesic, antiinflammatory and anticancer potential 💊
  4. Synthesis, characterization, molecular docking, analgesic, antiplatelet, and anticoagulant effects of dibenzylidene ketone derivatives 🧬
  5. Photolysis of parabens using medium-pressure mercury lamps: Toxicity effects in MCF7, Balb/c 3T3 cells and Ceriodaphnia dubia ⚡
  6. Differential metabolism of diastereoisomeric diterpenes by Preussia minima, found as endophytic fungus in Cupressus lusitanica 🌿
  7. Antiplasmodial properties and cytotoxicity of endophytic fungi from symphonia globulifera (Clusiaceae) 🌍
  8. Heterogeneous microtubules of self-assembled silver and gold nanoparticles using alive biotemplates ⚙️
  9. Nanostructured assemblies of gold and silver nanoparticles for plasmon enhanced spectroscopy using living biotemplates 💎
  10. Biosynthesis and mass spectral fragmentation pathways of 13C and 15N labeled cytochalasin D produced by Xylaria arbuscula 🔬