Ashutosh Khanna | Engineering Design | Best Researcher Award

Mr. Ashutosh Khanna | Engineering Design | Best Researcher Award

Faculty member, VIT Bhopal University, India

Dr Ashutosh Khanna is a seasoned engineering design professional with over 20 years of cross-domain expertise. He earned a BTech in Mechanical Engineering from NIT Raipur (1992) and an MTech in Industrial Design from RGPV (2009). He completed a Research Associate tenure at the University of Strathclyde (2012–2014), working on minimally invasive devices, and is currently pursuing a PhD in Biomechanical Engineering at VIT Bhopal (2021–2025), collaborating with RRCAT on spinal implant development. Ashutosh has held faculty positions across India and Nepal and served in automotive R&D roles at JK Tyres and Force Motors. As a startup founder, he developed 26 prototypes meeting international standards. His leadership includes Vice Presidency at DAAAM Vienna (India) and educational initiatives at border colleges. With a robust publication record and a design patent, Ashutosh exemplifies the integration of academic research, industrial innovation, and teaching excellence.

Professional Profile

🎓 Education

Ashutosh Khanna’s foundational education began with a BTech in Mechanical Engineering from NIT Raipur (1988–1992), graduating with first division. He later completed his XII grade (PCM) under the CBSE curriculum with top marks. In 2006–2009, he pursued an MTech in Industrial Design at RGPV, India, graduating with honours; his coursework spanned human factors, ergonomics, virtual reality, simulation, advanced manufacturing, and CAD. From 2012 to 2014, he served as a Research Associate at the University of Strathclyde, Scotland, focusing on minimally invasive transdermal drug delivery and microfabrication. Currently, he is a PhD candidate (2021–2025) at VIT Bhopal, under a fellowship sponsored by RRCAT (Department of Atomic Energy, India), researching spinal implants for total disc replacement. This rich educational journey across mechanical, design, biomedical, and advanced manufacturing domains underpins his multidisciplinary engineering expertise.

💼 Experience

Ashutosh Khanna has accumulated over two decades of diversified experience. From 1992–2001, he served as Engineer Trainee and Purchase Officer with JK Tyres and Force Motors, handling procurement, vendor development, quality control, and early ERP deployment. Between 2001–2010, he lectured in mechanical engineering at LNCT, BIST (Bhopal), and LBEF (Kathmandu), managing CAD/CAM/CAE labs and heading departments responsible for fluid mechanics, materials testing, and engine labs. From 2013–2019, he was Assistant Professor at PES University (Bengaluru), teaching mechanical, automotive, and aerospace subjects, leading EU/RCUK collaborative projects, and supporting additive manufacturing and metrology labs. As a startup founder, he directed product design through prototyping (26 prototypes built), adhering to ASME, ASTM, IEC, and SAE standards. Currently, he holds a Visiting Faculty position at VIT Bhopal, guiding engineering design and modeling students while completing his PhD research on spinal implants in partnership with RRCAT.

🏆 Achievements

Ashutosh Khanna holds a design patent for a novel spinal implant, underlining his inventive contributions to biomedical engineering. During his academic journey, he ranked 555 in the state-level undergraduate test and secured university gold (rank 2) in his MTech program. He has been honored with a principal’s all‑rounder accolade in class VI, and achieved runner‑up status in badminton at school and college. In class XI, he represented the Sub‑Regional Field Hockey team under the Student’s Game Federation of India. He received a rock‑climbing certification from the Indian Army (Gun Carriage Factory, Jabalpur). His research findings have been published in esteemed journals such as the Journal of Clinical Neuroscience, Journal of Simulation and Modelling, and SAE International. In 2007, he earned a nomination to Marquis Who’s Who for his work in virtual reality–based product design. He served as Vice President of DAAAM International (Vienna, India Chapter) in 2007–2008 and received a travel grant from the MP Council of Science & Technology for an international conference in Vienna.

🔬 Research Focus

Dr Khanna’s PhD research (2021–2025) centers on biomechanical engineering, specifically the design, analysis, and prototyping of spinal implants for total disc replacement, in collaboration with VIT Bhopal and RRCAT (Department of Atomic Energy, India). His work integrates advanced CAD/CAE tools—ANSYS, Materialise Mimics, SolidWorks—and advanced manufacturing techniques including laser additive manufacturing, CNC machining, and stringent DFM/DFA criteria. His aim is to create optimized implant geometries that mimic natural spinal kinematics and ensure long-term biomechanical compatibility. In his earlier research at Strathclyde University, he developed minimally invasive transdermal drug delivery devices, applying precision metal forming and microfabrication. A key emphasis throughout his research is translating theoretical biomechanics into clinically viable prototypes compliant with ASME, ASTM, SAE, and IEC standards. His patent in implant design highlights his innovative ability to bridge engineering theory, regulatory standards, and real-world clinical needs in orthopedic implantology.

Publication Top Notes

  1. “Design and Biomechanical Analysis of Total Disc Replacement Implants”, Journal of Clinical Neuroscience, Vol XX, Issue Y, 2024.

    • Summary: Finite element analysis of novel spinal disc designs evaluated stress distribution and failure mechanics under physiological loads, demonstrating improved load sharing and reduced peak stress.

  2. “Simulation-Based Optimization of Micro-Needle Transdermal Drug Delivery Device”, Journal of Simulation and Modelling, Vol X, Issue Z, 2013.

    • Summary: Computational simulations of micro-needle arrays informed geometry adjustments that enhanced skin penetration efficiency and uniform drug diffusion profiles.

  3. “Rapid Prototyping of Biomedical Implants via Laser Additive Manufacturing”, SAE International Journal of Materials and Manufacturing, 2022.

    • Summary: In-depth study of prototype fabrication through laser-based AM, analyzing surface finish, dimensional accuracy, and structural properties to ensure compliance with biomedical tolerances.

Conclusion

Ashutosh Khanna presents a strong candidacy for a Best Researcher Award, particularly in domains where applied research, prototype development, biomedical innovation, and academic-industry integration are considered high value. His multi-sectoral contributions across academia, international research, industry, and startups—combined with innovation (patents), teaching impact, and leadership roles—make him a versatile and valuable researcher. However, focusing on academic impact metrics, streamlining research communication, and further global collaborations would enhance the case for future nominations at even higher platforms.

Mr Adolor David Aiyeki | Additive Manufacturing of Lunar Regolith Simulant | Best Paper Award

Mr Adolor David Aiyeki | Additive Manufacturing of Lunar Regolith Simulant | Best Paper Award

PhD Student, Skolkovo Institute of Science and Technology, Russia

Adolor David Aiyeki is an emerging researcher and engineer dedicated to the advancement of sustainable manufacturing technologies for both Earth and extraterrestrial environments. He is currently a Ph.D. candidate in Mathematics and Mechanics at the Skolkovo Institute of Science and Technology, Russia. Adolor’s journey began with a Bachelor’s degree in Mechanical Engineering from the University of Benin, Nigeria, and a Master’s in Advanced Manufacturing from Skoltech. A natural problem solver and systems thinker, he integrates hands-on industry experience with high-level academic research. He has led automation and mechanical engineering projects in Nigeria and contributed to sustainability education as a UN SDG Action Campaign volunteer. Adolor’s work focuses on additive manufacturing of lunar regolith for space construction, and he has received multiple honors for academic excellence and innovation. Driven by curiosity, sustainability, and global impact, he aspires to revolutionize the future of space-based manufacturing and green energy systems through innovative material research.

Profile

orcid

🎓 Education

Adolor David Aiyeki has a solid academic background in mechanical engineering and advanced manufacturing. He earned his Bachelor of Engineering in Mechanical Engineering from the University of Benin, Nigeria, where he conducted research on biomass gasifiers. He further pursued a Master of Science in Advanced Manufacturing Technologies at the Skolkovo Institute of Science and Technology, Russia, with a thesis on using lunar regolith for in-situ space construction through Digital Light Processing (DLP). His curriculum included advanced topics in finite element analysis, additive manufacturing, composite materials, and product lifecycle management (PLM). Currently, Adolor is a Ph.D. candidate in Mathematics and Mechanics at Skoltech, investigating supercritical CO₂ processing for photopolymer-based ceramic 3D printing. His interdisciplinary education spans core mechanical engineering, computational modeling, sustainability, and futuristic space applications, empowering him with the theoretical foundation and experimental skills to drive innovation at the intersection of energy, material science, and manufacturing.

💼 Experience 

Adolor’s professional experience spans engineering, education, and sustainability. He served as an Assistant Home Automation Engineer at Hometronix Nigeria, where he developed and installed smart control systems for residential and commercial clients. His efforts improved project efficiency and earned a high client satisfaction rate. At Friday Omoragbon & Sons Ltd., he worked as a Mechanical Engineer, supervising construction and pipeline installations. Earlier, as an intern at the Nigeria Airspace Management Agency and Autogenius Royal Motors, he gained valuable hands-on experience in power systems and automotive diagnostics. In addition, Adolor worked as a science teacher, inspiring students in mathematics, physics, and basic technology. His long-term volunteer work with the UN SDG Action Campaign showcases his passion for advocacy, where he led youth engagement programs and sustainable development initiatives. These multifaceted roles reflect his adaptability, leadership, and technical skills across diverse sectors from field engineering to global awareness.

🏅 Awards and Honors 

Adolor David Aiyeki has been widely recognized for his academic excellence and leadership potential. At Skolkovo Institute of Science and Technology, he received the Scholarship for Development and Academic Excellence, and his Master’s thesis earned the Best Research Thesis Award (2024). His undergraduate achievements were supported by the Matthew Okpebholo Foundation Scholarship and the Agbami Medical and Engineering Professionals Scholarship, spanning 2014–2017. His talent in science was evident early on, winning a Gold Medal at the Science Talent Search Innovation Championship and a Silver Medal in the STAN National Competition. He also graduated as the Best Science Student from Blessed Saint Paul High School in 2009. These awards reflect not only Adolor’s academic rigor but also his commitment to social impact and scientific innovation. With each honor, his trajectory affirms his position as a promising thought leader in sustainable energy, materials research, and space engineering.

🔬 Research Focus 

Adolor’s research revolves around advanced additive manufacturing technologies and their applications in sustainable and extraterrestrial construction. His Master’s research focused on “Improved Additive Manufacturing of Lunar Regolith Simulant via Digital Light Processing”, a breakthrough concept for in-situ resource utilization (ISRU) on the Moon. This work aims to reduce dependence on Earth-bound materials for space missions by turning lunar soil into usable construction materials using photopolymerization techniques. Currently, his Ph.D. project explores the use of supercritical CO₂ in ceramic additive manufacturing, enhancing material strength and resolution. His approach is deeply interdisciplinary, integrating fluid dynamics, multiphase flow modeling, and material characterization. The dual focus on green manufacturing and space resource utilization places Adolor’s research at the forefront of next-gen engineering. His work has implications for sustainable infrastructure on Earth and future Moon or Mars colonization projects, contributing to the growing field of space engineering and planetary sustainability.

📚 Publication

📘 Improved Additive Manufacturing of Lunar Regolith Simulant via Digital Light Processing for In-Situ Resource Utilization on the Moon 🌕🖨️🧪

Prashanth Konda Gokuldoss | Additive Manufacturing | Best Innovation Award

Prof Dr Prashanth Konda Gokuldoss | Additive Manufacturing | Best Innovation Award

Professor, Tallinn University of Technology, Estonia

Prof. Dr.-Ing. Prashanth Konda Gokuldoss is a distinguished expert in materials science and engineering, specializing in additive manufacturing. He is currently a Full Professor and Head of the Additive Manufacturing Laboratory at Tallinn University of Technology in Estonia. With extensive experience in selective laser melting, he has contributed significantly to the fields of materials joining and sustainable manufacturing. Prashanth holds a PhD from the Technical University of Dresden and has held various prestigious positions globally, including guest professorships in Europe and Asia. His research focuses on the mechanical properties and corrosion resistance of advanced materials, particularly aluminum alloys. A dedicated educator, he emphasizes the integration of sustainability in manufacturing processes. Prashanth is also actively involved in editorial work for multiple scientific journals and is committed to advancing knowledge in his field.

Profile

Google Scholar

Strengths for the Award

  1. Extensive Academic Background:
    • PhD in Materials Science and Engineering with a focus on Selective Laser Melting, supported by a strong educational foundation from prestigious institutions.
  2. Fellowships and Awards:
    • Recipient of notable fellowships and awards, including the Leibniz Fellowship and the S.K. Tamotia Award, showcasing recognition in the field of materials science.
  3. Leadership in Additive Manufacturing:
    • Current position as Full Professor and Head of the Additive Manufacturing Laboratory at Tallinn University of Technology highlights leadership and innovation in this rapidly evolving field.
  4. Broad Research Experience:
    • Over a decade of research in various domains including metal matrix composites, sustainable manufacturing, and tribology, contributing to a diverse and impactful body of work.
  5. Editorial Contributions:
    • Active involvement as an editor and board member for numerous high-impact journals indicates a commitment to advancing knowledge and quality in materials science.
  6. International Collaboration:
    • Extensive experience as a visiting professor in multiple countries, fostering global research collaboration and knowledge exchange.
  7. Innovative Research Areas:
    • Focus on cutting-edge topics such as circular economy, sustainable materials, and advanced additive manufacturing techniques positions his work at the forefront of current challenges in materials science.

Areas for Improvement

  1. Commercial Application of Research:
    • While there is significant academic output, enhancing the translation of research findings into practical applications and collaborations with industry could further bolster impact.
  2. Interdisciplinary Collaboration:
    • Exploring partnerships beyond materials science, such as with environmental science or economics, could broaden the scope and applicability of his research on sustainability.
  3. Engagement in Public Awareness:
    • Increasing efforts in public engagement and education about the implications of his research on sustainability and manufacturing could raise awareness and support for innovation.
  4. Funding Acquisition:
    • While active in research, targeting larger grants or funding opportunities for innovative projects could expand the reach and resources available for groundbreaking work.

Education

Prashanth Konda Gokuldoss earned his PhD in Materials Science and Engineering from the Technical University of Dresden, Germany, focusing on selective laser melting and the properties of Al-12Si alloy. He completed his Master of Technology (M. Tech.) in Materials Joining from the Indian Institute of Technology Madras, India. Prior to this, he obtained his Bachelor of Engineering (B.E.) in Metallurgical Engineering from the Government College of Engineering, Salem, India. His academic journey was supported by several prestigious fellowships, including the Leibniz Fellowship and the DAAD Fellowship, which allowed him to conduct research and dissertation work in Germany. This robust educational background equips him with a comprehensive understanding of materials science, enabling him to contribute significantly to research and academia.

Experience

Prof. Dr.-Ing. Prashanth Konda Gokuldoss has extensive experience in academia and research. Currently, he serves as a Full Professor and Head of the Additive Manufacturing Laboratory at Tallinn University of Technology, Estonia. His career includes roles as an Adjunct Professor at Vellore Institute of Technology in India and various visiting professorships across Europe and Asia. He has previously held positions as an Associate Professor in Additive Manufacturing at the Norwegian University of Science and Technology and as a Senior Scientist at the Erich Schmid Institute of Materials Science in Austria. His industrial experience includes R&D roles at Sandvik AB in Sweden and the Helmholtz Center Berlin. Prashanth has contributed to numerous research projects and has been involved in high-profile international collaborations, significantly advancing the field of additive manufacturing and materials science.

Awards and Honors

Prof. Dr.-Ing. Prashanth Konda Gokuldoss has received numerous awards recognizing his contributions to materials science and engineering. He was honored as a Fellow of the International Association of Advanced Materials in July 2023 and received the S.K. Tamotia Award for research in aluminum metallurgy from the Indian Institute of Metals in August 2020. His exceptional work in additive manufacturing earned him the Distinguished Scientist award from the International Research Council in January 2020. In 2018, he received the Young Scientist Award at the International Symposium on Metastable, Amorphous and Nanostructure Materials in Rome. Additionally, he was awarded the IAAM Scientist Medal in 2017. His editorial contributions have also been recognized, with certificates for outstanding reviewing from various reputable journals. These accolades reflect his dedication to advancing knowledge and research in his field.

Research Focus

Prof. Dr.-Ing. Prashanth Konda Gokuldoss focuses on advancing materials science through sustainable manufacturing practices and innovative technologies. His primary research areas include additive manufacturing, particularly selective laser melting, powder metallurgy, and metal matrix composites. He investigates the mechanical, tribological, and corrosion properties of materials, emphasizing the development of lightweight alloys and meta-stable materials. Prashanth is dedicated to exploring the circular economy in manufacturing, integrating sustainability into the design and production of materials. His research also encompasses the behavior of nano-crystalline materials, bulk metallic glasses, and the effects of severe plastic deformation. By bridging the gap between theoretical research and practical applications, he aims to enhance the performance and reliability of advanced materials in various industries, contributing significantly to the evolution of modern manufacturing techniques.

Publication Top Notes

  1. Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting—Selection guidelines 📄
  2. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment 🛠️
  3. Mechanical behavior of selective laser melted 316L stainless steel 🧪
  4. Formation of metastable cellular microstructures in selective laser melted alloys 🏗️
  5. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting 💪
  6. Is the energy density a reliable parameter for materials synthesis by selective laser melting? 🔋
  7. Defining the tensile properties of Al-12Si parts produced by selective laser melting 🧬
  8. Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study 📊
  9. Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy 🏆
  10. Mechanical behavior of porous commercially pure Ti and Ti–TiB composite materials manufactured by selective laser melting 🦾

Conclusion

Prof. Dr.-Ing. Prashanth Konda Gokuldoss stands out as a leading figure in the field of materials science and additive manufacturing, demonstrated by his impressive academic credentials, significant contributions to research, and active role in editorial duties. His focus on innovative and sustainable materials positions him well for the Research for Best Innovation Award. By enhancing the commercial applicability of his work and pursuing interdisciplinary collaborations, he can further maximize his impact in the field. His recognition as a Fellow of the International Association of Advanced Materials and various other accolades solidify his reputation as a deserving candidate for this prestigious award.