Dr. Hem Bahadur Motra | Rock Mechanics | Applied Engineering Award

Lecturer, Christian Albrecht University of Kiel, Germany

Dr. Hem Bahadur Motra is a distinguished geomechanics expert and academic leader with a German nationality and South Asian roots. He currently serves as the Head of the Geomechanics Experimental Laboratory at Christian-Albrechts-Universität zu Kiel and holds lecturing positions at both Kiel University and the University of Applied Sciences Kiel. His interdisciplinary expertise spans rock mechanics, structural engineering, and geotechnical testing. Renowned for his international collaborations and practical research applications, Dr. Motra has been affiliated with premier institutions across Europe, Asia, and North America. His scientific work integrates multiscale experimental modeling, anisotropic behavior of rocks, and geotechnical system responses under complex stress conditions. Beyond academia, he consults for engineering firms in Germany, Nepal, and the U.S., translating complex research into applied solutions. Dr. Motra is a forward-thinking researcher committed to developing sustainable subsurface engineering practices through innovation, data integration, and high-fidelity experimental validation.

Professional Profile

Scopus

Education

Dr. Hem Bahadur Motra has pursued a progressive academic trajectory in civil engineering, specializing in geomechanics and structural engineering. He earned his Doctorate in Engineering (Dr.-Ing.) from Bauhaus-Universität Weimar with the highest distinction, focusing on quality assessment of structural experimental models. His Master’s degree in Civil Engineering with a focus on Geotechnics and Infrastructure was awarded by Gottfried Wilhelm Leibniz Universität Hannover, with excellent academic performance. He completed his Bachelor’s degree in Civil Engineering at Tribhuvan University, Nepal, graduating with distinction. Dr. Motra is currently finalizing his Habilitation at Christian-Albrechts-Universität zu Kiel, focusing on the multiscale and multipurpose integration of rock physics and geomechanics. His education is enriched by fellowships and scholarships from prestigious organizations, including DAAD and national academic institutions. His academic foundation blends strong analytical theory with a practical, problem-solving approach, making him a leader in both scientific inquiry and real-world application.

Experience

Dr. Motra brings extensive professional and academic experience across universities, research institutes, and engineering consultancies. He leads the Geomechanics Experimental Laboratory at Christian-Albrechts-Universität zu Kiel, where he also teaches courses in marine and terrestrial geotechnics. He lectures at the University of Applied Sciences Kiel in civil engineering, and formerly contributed to the Bauhaus-Universität Weimar as a research assistant. Internationally, he has completed multiple research stays across Europe, North America, and Asia, working with leading experts in rock physics, shale hydrocarbon exploration, and underground construction. Additionally, he co-founded Geocom International Pvt. Ltd. in Nepal, focusing on geotechnical investigation, tunneling, and subsoil surveys. His consulting experience includes collaborations with Babendererde Engineers (Germany), Engineering and Testing Service Inc. (USA), and Kastamandap Associate Pvt Ltd (Nepal). His work integrates research, teaching, consulting, and experimentation—making him an applied engineering professional with global influence and technical depth.

Research Focus

Dr. Hem Bahadur Motra’s research bridges the gap between theoretical rock mechanics and applied geotechnical engineering. His central focus is on the multiscale behavior of anisotropic rocks under true-triaxial and thermal stress environments. He investigates micromechanical properties of kerogen-rich formations, deformation in high-rank coals, and the behavior of shale under varying lithological and stress conditions. His approach emphasizes experimental validation using advanced triaxial apparatus, with applications in deep tunneling, underground energy storage, and hydrocarbon recovery. Dr. Motra also explores quality control techniques for structural experimental models and integrates numerical modeling to simulate real-world geotechnical behavior. His work has strong implications in sustainable infrastructure design, underground construction, and the geotechnical challenges of climate-resilient development. By combining laboratory precision, field knowledge, and modeling expertise, Dr. Motra contributes to safer and more efficient engineering solutions in both marine and terrestrial environments.

Publication Top Notes

Title: Elastic properties of anisotropic rocks using a stepwise loading framework in a true triaxial testing apparatus
Journal: Geoenergy Science and Engineering
Authors: Hem Bahadur Motra et al.
Summary: This study investigates the elastic response of anisotropic rocks under multiaxial loading. A custom true-triaxial apparatus was used to capture stiffness variations and directional dependency in rock specimens. Results help improve geomechanical models for underground construction and energy extraction.

Title: Influence of lithological contrast on elastic anisotropy of shales under true-triaxial stress and thermal conditions
Journal: International Journal of Rock Mechanics and Mining Sciences
Authors: Hem Bahadur Motra et al.
Summary: This paper examines how lithological heterogeneity affects shale behavior under combined stress and temperature conditions. Findings aid in optimizing hydraulic fracturing and subsurface fluid flow simulations.

Title: Elastic anisotropy and deformation characteristics of Pennsylvania anthracite
Journal: International Journal of Coal Geology
Authors: Hem Bahadur Motra et al.
Summary: Focuses on deformation and elastic responses of high-rank coals. The study provides insight into coal seam stability and gas extraction efficiency, with implications for mine safety.

Title: Micromechanical variation of organic matter (kerogen type I) under controlled thermal maturity progression
Journal: Journal of Rock Mechanics and Geotechnical Engineering
Authors: Hem Bahadur Motra et al.
Summary: Analyzes the microstructural and mechanical evolution of kerogen under simulated thermal aging. Results assist in understanding source rock maturation and improving petroleum system models.

Conclusion

Dr. Motra exemplifies the spirit of applied engineering through his blend of academic excellence, international collaboration, and field-relevant innovation. His contributions directly address challenges in geotechnical and subsurface engineering, making his candidacy highly suitable and compelling for the Research for Applied Engineering Award.

Hem Bahadur Motra | Rock Mechanics | Applied Engineering Award

You May Also Like