Abdulhalim Musa Abubakar | Process Engineering | Chemical Engineering Award

Mr. Abdulhalim Musa Abubakar | Process Engineering | Chemical Engineering Award

Modibbo  Adama University (MAU) ,Nigeria

Abdulhalim Musa Abubakar is a Nigerian Chemical Engineer dedicated to innovation in renewable energy, chemical reaction engineering, and water treatment. Born and raised in Adamawa State, he has developed a solid foundation in both theoretical knowledge and practical application of chemical engineering principles. With academic qualifications from the University of Maiduguri and a diverse professional portfolio, he brings experience from academic, industrial, and development sectors. His work spans teaching, research, water quality analysis, and biogas technology. Abdulhalim currently serves as an Assistant Lecturer at Modibbo Adama University (MAU), where he integrates research, student mentorship, and curriculum advancement. Known for being proactive, detail-oriented, and results-driven, he is committed to using his skills for environmental sustainability and energy transformation in Nigeria and beyond. His vision is to contribute meaningfully to solving global energy and environmental challenges through cutting-edge research and innovative engineering practices.

Professional Profile

Orcid

🎓 Education

Abdulhalim Musa Abubakar holds both Bachelor’s and Master’s degrees in Chemical Engineering from the University of Maiduguri, where he graduated with distinctions (B.Eng: 4.55 CGPA, M.Eng: 4.85 CGPA). His academic journey began at University Primary School, followed by Imam Malik Secondary School, where he earned his WAEC certificate in 2013. He pursued higher education with a clear focus on energy, environmental remediation, and reaction engineering. In addition to formal academic achievements, he has undertaken numerous professional training programs and certifications, including diplomas in Oil & Gas Management and Control Engineering, and certifications in AutoCAD, data science, project management, and programming. These multi-disciplinary skills strengthen his engineering knowledge and his capacity to tackle complex industrial challenges. His educational path reflects a strong commitment to academic excellence and lifelong learning, enabling him to contribute both in research and practical problem-solving within the chemical engineering domain.

💼 Experience

Abdulhalim Musa Abubakar has gained diverse experience across academic, industrial, and community-based projects. He began his practical journey as a Plant Operator Intern at Maiduguri Water Treatment Plant in 2017. During his NYSC service year, he served at Mada Water Works, where he performed water quality analysis. He briefly taught at Bulumkutu Islamic Science School before joining Modibbo Adama University (MAU) in 2019 as a Graduate Assistant, and subsequently, as an Assistant Lecturer in 2023. He has participated in data gathering and fieldwork as an Enumerator with Borno Women Development Initiative. His career showcases a balance of academic responsibilities and field engagement. He also has notable experience with environmental modeling and simulation software, and his teaching and research focus on sustainable engineering practices. These roles reflect his multidisciplinary capabilities and his commitment to using engineering tools for real-world impact, especially in energy and environmental sectors.

🏆 Awards and Honors

Abdulhalim Musa Abubakar has been recognized for his service, academic excellence, and professional dedication. Notable among his accolades is the Certificate of Service awarded for his voluntary role as Tutorial Coordinator by the Nigerian Society of Chemical Engineers (NSChE), UNIMAID Student Chapter (2018). He also received recognition from the Muslim Students’ Society of Nigeria (MSSN), Faculty of Engineering Branch, for his voluntary academic support in 2017/2018. He has earned certificates of participation and achievement in over a dozen international workshops, seminars, and webinars, including those hosted by prestigious institutions such as the Royal Society of Chemistry, Polytechnic University of the Philippines, and Siirt University in Türkiye. His proactive participation in global conferences and research congresses underscores his commitment to continuous learning and professional engagement. These honors reflect both academic leadership and a deep-seated drive to contribute to scholarly and societal advancement in engineering and beyond.

🔍 Research Focus

Abdulhalim Musa Abubakar’s research centers around renewable energy systems, biogas production, microbial kinetics, environmental remediation, chemical reaction engineering, and waste-to-energy technologies. He has a particular interest in transforming organic waste materials, such as chicken manure and medical waste, into biogas through anaerobic digestion processes. His master’s research explored microbial growth modeling and digester performance, contributing insights into sustainable energy generation from biodegradable waste. His research also addresses pharmaceutical waste management, modeling and simulation using ASPEN Plus, and water treatment processes using eco-friendly techniques. Additionally, he has presented studies on energy access in underserved areas like refugee camps, reflecting his interest in humanitarian engineering. Abdulhalim is dedicated to applying data science, programming, and simulation tools to solve energy and environmental challenges. His goal is to develop scalable, cost-effective technologies that bridge the gap between clean energy supply and waste reduction, particularly in Africa and other developing regions.

📚 Publication Top Notes

1. Modeling Anaerobic Decomposition: JMP Application with Biomass Data

Authors: Abubakar, A. M.; Elboughdiri, N.; Chibani, A.; Nneka, E. C.; Yunus, M. U.; Ghernaout, D.
Journal: Portugaliae Electrochimica Acta (2025)
Summary: This paper models anaerobic digestion using JMP software based on experimental data from two biomass combinations in Nigeria. Neural networks and response surface methodology were applied to optimize biogas production. Monod kinetic parameters were also estimated, showing excellent prediction accuracy and insight into biomass-substrate interactions.

2. Review on Municipal Solid Waste, Challenges and Management Policy in Pakistan

Authors: Asif, M.; Laghari, M.; Abubakar, A. M.; Suri, S. K.; Wakeel, A.; Siddique, M.
Journal: Portugaliae Electrochimica Acta (2025)
Summary: A critical review highlighting Pakistan’s challenges in managing municipal solid waste, including rapid urbanization, insufficient infrastructure, and lack of effective policy enforcement. It recommends comprehensive reforms, sustainable waste processing, and public-private collaborations for improved waste governance.

3. Development of Low-Cost Adsorbents from Coconut Shell for Energy-Efficient Dye Removal from Laboratory Effluent Discharge

Authors: Abdulhalim Musa Abubakar; Naeema Nazar; Abdulghaffaar Assayyidi Yusuf; Enyomeji Ademu Idama; Moses NyoTonglo Arowo; Aisha Maina Ma’aji; Irnis Azura Zakarya
Journal: Measurement: Energy (June 2025)
Summary: This research focuses on developing coconut shell-based adsorbents for removing dyes from laboratory wastewater. The material showed over 90% dye removal efficiency under optimal conditions and was confirmed as a cost-effective and energy-efficient method for effluent treatment.

4. Characterizing the Reducing Properties of Biofuels in Activating Metal Catalyst of Refinery Process

Authors: Mohammed Abdulrahim; Usman Habu Taura; Abdulhalim Musa Abubakar; Marwea Al-Hedrewy
Journal: Sustainable Processes Connect (May 2025)
Summary: Examines the effectiveness of biofuels in enhancing metal catalyst performance in refinery processes. The study found that biofuels provided a reducing atmosphere that facilitated catalyst activation but also noted challenges such as catalyst deactivation and thermal instability.

5. Impact of Furfural Raffinate Oil as a Filling Agent on the Vulcanization and Mechanical Properties of Rubber

Authors: Suleiman A. Wali; Abubakar Mohammed; Abdulhalim Musa Abubakar; Abdulmuhsin Usman; Kamran Khan
Journal: Current Engineering Letters and Reviews (January 2025)
Summary: Investigates the use of furfural raffinate oil as a rubber additive. Findings show improvements in rubber strength and flexibility up to a certain concentration, indicating potential for sustainable and cost-effective rubber production using industrial by-products.

Conclusion

Abdulhalim Musa Abubakar stands out as a dynamic and forward-thinking Chemical Engineer whose academic achievements, hands-on industrial experiences, and proactive engagement in research and professional development reflect a deep commitment to sustainable innovation. His work spans critical sectors including renewable energy, biogas production, water treatment, and environmental remediation—key areas that align with global sustainability goals. Through a strong foundation in chemical engineering, supported by advanced software and data science skills, he has consistently demonstrated his ability to bridge theoretical knowledge with practical applications. Abdulhalim’s numerous certifications, conference contributions, and teaching roles further underscore his dedication to lifelong learning and capacity building. As he continues to evolve as a researcher and educator, his efforts are poised to contribute significantly to solving pressing energy and environmental challenges both within Nigeria and internationally. His trajectory reflects not only technical competence but also a clear vision for engineering as a tool for societal transformation.

Christos Mytafides | Materials Engineering Award | Excellence in Innovation

Dr Christos Mytafides | Materials Engineering Award | Excellence in Innovation

Dr Christos Mytafides , University of Ioannina, Greece

Christos Mytafides is a distinguished researcher in advanced multifunctional materials and energy-harvesting technologies. Born on July 14, 1985, in Xanthi, Greece, he currently resides in Chania, Crete. Christos earned his Ph.D. from the University of Ioannina, focusing on printed electronics and energy-harvesting composites. His work is well-regarded for its innovation in integrating advanced materials into structural composites. He has held various roles, including Postdoctoral Research Scientist at Technical University of Crete and R&D Engineer at ARCO/Murray. Christos has been a Fulbright Scholar at the University of Miami and has collaborated with leading institutions like Eindhoven University of Technology. His research has led to multiple publications and patents, and he continues to push the boundaries of material science and sustainability.

Publication Profile

Google Scholar

Education

Christos Mytafides holds a Ph.D. in Materials Science & Engineering from the University of Ioannina, where he specialized in advanced multifunctional energy-harvesting materials (2018-2023). His Master’s Degrees include one in Advanced Materials from the University of Ioannina (2016-2018), focusing on optoelectronic and magnetic materials, and another in Environmental Engineering & Science from Democritus University of Thrace (2013-2015), emphasizing energy-efficient designs. He also has a Bachelor’s Degree in Structural Engineering from the International Hellenic University (2003-2009), where he studied structural analysis and restoration. Additionally, Christos completed online courses in Quantum Physics, Sustainable Energy, and other relevant fields from prestigious institutions like Stanford and MIT. His comprehensive education reflects a strong foundation in both theoretical and applied aspects of materials science and engineering.

Experience 

Christos Mytafides has a diverse professional background in materials science and engineering. Currently a Postdoctoral Research Scientist at Technical University of Crete, he works on advanced composite materials. Previously, he served as a Research & Development Engineer at ARCO/Murray, focusing on structural and sustainability engineering. He was involved in several projects at the University of Ioannina, including Horizon 2020 and NSRF projects related to energy harvesting and smart materials. Christos also gained valuable experience during his Fulbright Scholarship at the University of Miami, researching multifunctional composites. His work as a Lab Assistant and Teaching Assistant at various universities, including Eindhoven University of Technology and Democritus University of Thrace, further underscores his expertise in both research and education. His experience spans across different research laboratories and practical engineering roles, reflecting a robust career in material science.

Awards and Honors

Christos Mytafides has received significant recognition for his contributions to materials science and energy-harvesting technologies. He was awarded the Fulbright Scholarship for his research at the University of Miami, which highlights his innovative work in multifunctional composites. His research has been recognized in various prestigious journals, underscoring the impact of his contributions to advanced materials and energy-harvesting technologies. Christos has also been involved in notable projects such as Horizon 2020 and NSRF, further cementing his reputation in the field. His work on advanced composites and energy-harvesting materials has earned him several accolades, including publication in high-impact journals like Materials Advances and Journal of Power Sources. His commitment to advancing the field of materials science is reflected in the numerous awards and honors he has received throughout his career.

Research Focus 

Christos Mytafides’s research focuses on advanced multifunctional materials and energy-harvesting technologies. His work primarily explores the integration of printed electronics with structural composites to develop innovative energy-harvesting solutions. He is particularly interested in developing and characterizing materials that can efficiently convert and store energy. His research includes the design and fabrication of high-performance solar cells, thermoelectric generators, and other energy-harvesting devices. Christos’s work also encompasses optoelectronic and magnetic materials, with applications in sustainable energy systems and smart textiles. His contributions to the field have led to significant advancements in the efficiency and functionality of composite materials. By combining theoretical knowledge with practical applications, Christos aims to push the boundaries of materials science and engineering, addressing contemporary challenges in energy sustainability and advanced material development.

Publication Top Notes

“A hierarchically modified fibre-reinforced polymer composite laminate with graphene nanotube coatings operating as an efficient thermoelectric generator” 🌐 Energy Advances, 2024

“Integrated architectures of printed electronics with energy-harvesting capabilities in advanced structural composites” 📚 University of Ioannina, 2023

“Carbon fiber/epoxy composite laminates as through-thickness thermoelectric generators” 🛠️ Composites Science and Technology, 2023

“Fully printed and flexible carbon nanotube-based thermoelectric generator capable for high-temperature applications” ⚡ Journal of Power Sources, 2022

“Printed single-wall carbon nanotube-based Joule heating devices integrated as functional laminae in advanced composites” 🔬 ACS Applied Materials & Interfaces, 2021

“A high performance flexible and robust printed thermoelectric generator based on hybridized Te nanowires with PEDOT: PSS” 🔋 Applied Energy, 2021