Alexey Beskopylny | Civil Engineering | Best Researcher Award

Prof. Dr. Alexey Beskopylny | Civil Engineering | Best Researcher Award

Don State Technical University | Russia

Dr. Alexey N. Beskopylny is a distinguished researcher and Vice Rector at Don State Technical University, serving as a Professor in the Department of Transport Systems. He holds a Doctor of Technical Sciences degree and has made significant contributions to civil and structural engineering, materials science, and transport systems. His studies span concrete technology, geopolymers, recycled construction materials, digital modeling, and structural optimization using AI and machine learning. Dr. Beskopylny’s works are frequently featured in high-impact journals such as Scientific Reports, Polymers, Buildings, and Applied Sciences. He has collaborated extensively on international projects focusing on sustainable materials and innovative construction technologies. Recognized for his academic excellence and leadership, he has received multiple institutional honors for advancing the field of transport infrastructure and sustainable construction. His continued efforts contribute to the modernization of engineering education and the promotion of environmentally responsible building practices worldwide.

Profile : Orcid

Featured Publications

Zubarev, K. P., Razveeva, I., Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Mailyan, L. R., Shakhalieva, D. M., Chernil’nik, A., & Nikora, N. I. (2025). Predicting the strength of heavy concrete exposed to aggressive environmental influences by machine learning methods. Buildings, 15(21), Article 3998.

Özkılıç, Y. O., Kalkan, İ., Aksoylu, C., Madenci, E., Umiye, O. A., Althaqafi, E., Stel’makh, S. A., Shcherban’, E. M., & Beskopylny, A. N. (2025). Effect of stirrup spacing and recycled steel wires on the shear and energy dissipation of pultruded GFRP hybrid beams. Journal of Engineered Fibers and Fabrics, 20, Article 15589250251380680.

Ecemiş, A. S., Yildizel, S. A., Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Aksoylu, C., Madenci, E., & Özkılıç, Y. O. (2025). Sustainable concrete with waste tire rubber and recycled steel fibers: Experimental insights and hybrid PINN–CatBoost prediction. Polymers, 17(21), Article 2910.

Özkılıç, Y. O., Başaran, B., Aksoylu, C., Karalar, M., Zeybek, Ö., Althaqafi, E., Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., & Umiye, O. A. (2025). Bending performance of reinforced concrete beams with partial waste glass aggregate replacement assessed by experimental, theoretical and digital image correlation analyses. Scientific Reports, 15, Article 20716.

Stel’makh, S. A., Shcherban’, E. M., Beskopylny, A. N., Mailyan, L. R., Shilov, A. A., Razveeva, I., Oganesyan, S., Pogrebnyak, A., Chernil’nik, A., & Elshaeva, D. (2025). Enhancing the mechanical properties of sulfur-modified fly ash/metakaolin geopolymers with polypropylene fibers. Polymers, 17(15), Article 2119.

Sohail Ahmad Khan | Mathematics | Young Scientist Award

Dr. Sohail Ahmad Khan | Mathematics | Young Scientist Award

Quaid I Azam University Islamabad | Pakistan

Dr. Sohail Ahmad Khan is a distinguished researcher in Applied Mathematics with a strong background in Computational Fluid Dynamics, mathematical modeling, and heat and mass transfer. He earned his Ph.D., M.Phil., and M.Sc. in Applied Mathematics from Quaid-i-Azam University, Pakistan. His academic journey reflects a deep commitment to advancing analytical and numerical methods for nonlinear problems in Newtonian and non-Newtonian fluid mechanics.  Dr. Khan’s research primarily focuses on nanofluid flow, entropy generation, magnetohydrodynamics, and thermal analysis using advanced techniques such as the Homotopy Analysis Method, Finite Difference Method, and Keller Box Method. He actively serves as a reviewer for more than 120 high-impact journals and has received multiple international recognitions, including the World’s Top 2% Scientist ranking by Stanford University in 2022 and 2024. His dedication to mathematical innovation and interdisciplinary applications continues to influence modern engineering and physical sciences, contributing significantly to global research on nonlinear transport phenomena and energy optimization.

Profile : Google Scholar

Featured Publications

Hayat, T., Khan, S. A., Khan, M. I., & Alsaedi, A. (2019). Theoretical investigation of Ree–Eyring nanofluid flow with entropy optimization and Arrhenius activation energy between two rotating disks. Computer Methods and Programs in Biomedicine, 177, 57–68.

Khan, S. A., Hayat, T., Alsaedi, A., & Ahmad, B. (2021). Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis. Renewable and Sustainable Energy Reviews, 140, 110739.

Hayat, T., Khan, S. A., Khan, M. I., & Alsaedi, A. (2019). Optimizing the theoretical analysis of entropy generation in the flow of second grade nanofluid. Physica Scripta, 94(8), 085001.

Razaq, A., Hayat, T., Khan, S. A., & Momani, S. (2023). ATSS model based upon applications of Cattaneo-Christov thermal analysis for entropy optimized ternary nanomaterial flow with homogeneous-heterogeneous chemical reactions. Alexandria Engineering Journal, 79, 390–401.

Khan, S. A., Hayat, T., Khan, M. I., & Alsaedi, A. (2020). Salient features of Dufour and Soret effect in radiative MHD flow of viscous fluid by a rotating cone with entropy generation. International Journal of Hydrogen Energy, 45(28), 14552–14564.