Qi Liang | Pattern Recognition | Excellence in Research

Mr Qi Liang | Pattern Recognition | Excellence in Research

Master in Tongji University at China

Qi Liang is a dedicated researcher and master’s student at Tongji University, PR China, specializing in mechanical engineering. With a strong foundation in industrial engineering from Jiangsu University of Science and Technology, Qi has a keen interest in advancing technology through innovative research. Recognized for introducing self-supervised learning methods in semiconductor applications, Qi’s work aims to solve complex challenges in pattern recognition. Their publication in Engineering Applications of Artificial Intelligence reflects a commitment to high-impact research. With multiple ongoing projects and a focus on practical applications, Qi is paving the way for efficient solutions in the semiconductor industry.

Profile

Google Scholar

Strengths for the Award

  1. Innovative Research: Qi Liang has introduced a self-supervised learning method for few-shot learning in semiconductor applications, demonstrating originality and a significant contribution to the field.
  2. Publication Record: The recent publication in Engineering Applications of Artificial Intelligence showcases a commitment to high-quality research, adding to the credibility of the work.
  3. Diverse Research Interests: With a focus on computer vision, multi-modal learning, and fault diagnosis, Qi’s work spans multiple cutting-edge areas, which increases the potential impact of the research.
  4. Practical Applications: The research addresses real-world challenges in the semiconductor industry, offering low-cost, efficient methods that have immediate applicability.
  5. Academic Engagement: Qi’s active involvement in ongoing projects and industry collaborations indicates a robust engagement with both academic and practical aspects of research.

Areas for Improvement

  1. Broader Collaboration: Expanding collaborations with international researchers could enhance the research’s visibility and applicability on a global scale.
  2. Increased Publication Volume: While the current publication is commendable, a more extensive publication record could further establish Qi’s expertise and leadership in the field.
  3. Outreach and Communication: Engaging in more outreach activities, such as conferences and seminars, could help disseminate findings and foster connections within the research community.

Education 

Qi Liang graduated with a Bachelor’s degree in Industrial Engineering from Jiangsu University of Science and Technology, where foundational principles of engineering and technology were mastered. Currently, Qi is pursuing a Master’s degree in Mechanical Engineering at Tongji University, one of China’s prestigious institutions, now in their third year of the program. This advanced education has allowed Qi to engage deeply with cutting-edge topics, particularly in computer vision and machine learning. Through rigorous coursework and research, Qi has developed expertise in areas such as pattern recognition, self-supervised learning, and fault diagnosis, equipping them with the skills necessary to tackle complex engineering problems and contribute significantly to both academic and industrial advancements.

Experience

Qi Liang has gained substantial experience through multiple research projects, totaling five completed or ongoing initiatives that emphasize practical applications of machine learning in semiconductor manufacturing. In addition to academic research, Qi has participated in three consultancy and industry-sponsored projects, bridging the gap between theoretical knowledge and real-world applications. Their collaborative efforts in research have led to valuable partnerships and a broader understanding of the industry’s challenges and needs. As the first to implement self-supervised learning techniques in few-shot learning tasks related to wafer map pattern recognition, Qi has showcased exceptional innovation. This unique approach has opened new avenues for cost-effective and efficient solutions within the semiconductor sector, positioning Qi as an emerging leader in their field.

Research Focus 

Qi Liang’s research focuses on the intersection of computer vision and machine learning, with a strong emphasis on pattern recognition, keypoint detection, and image retrieval. Specializing in self-supervised and multi-modal learning, Qi aims to develop innovative methodologies that minimize the reliance on labeled data while maximizing efficiency and applicability in industrial contexts. Current research projects explore dynamic adaptation mechanisms for few-shot learning, specifically tailored for wafer map pattern recognition in the semiconductor industry. Qi is also interested in signal processing and fault diagnosis, seeking to improve reliability and performance in manufacturing processes. This research direction not only contributes to the academic community but also addresses pressing industry challenges, promoting advancements in automation and smart manufacturing.

Publication Top Notes

  • Masked Autoencoder with Dynamic Multi-Loss Adaptation Mechanism for Few Shot Wafer Map Pattern Recognition 📄

Conclusion

Qi Liang’s innovative contributions to the field of mechanical engineering and computer vision make a strong case for the Excellence in Research award. The unique approach to self-supervised learning in few-shot learning for wafer map pattern recognition signifies both a breakthrough in methodology and practical application in the semiconductor industry. With a few strategic improvements, Qi has the potential to further amplify the impact of their research and cement their status as a leading researcher in their field.

Dawit Alemayehu | Biomechanical Engineering Award | Best Researcher Award

Mr Dawit Alemayehu | Biomechanical Engineering Award | Best Researcher Award

Mr Dawit Alemayehu, Hokkaido university , Japan

Dawit Bogale Alemayehu is a dedicated researcher pursuing his PhD in Biomechanical Design at Hokkaido University, Japan, expected to graduate in September 2024. With an MSc from Addis Ababa University and a BSc from Jimma University, Ethiopia, his research focuses on advanced engineering applications like biomimetic bone structures and energy absorption materials. Dawit has published extensively in international journals and presented his work at prestigious conferences worldwide. His expertise includes CAD modeling, finite element analysis, and experimental validation. Passionate about innovation, Dawit aims to integrate cutting-edge technologies for impactful solutions in biomechanics and materials science.

Publication Profile

Orcid

Education

Dawit Bogale Alemayehu’s academic journey spans across continents and disciplines. He pursued his BSc in Mechanical Engineering at Jimma University, Ethiopia, where he focused on designing thermal systems. His MSc at Addis Ababa University delved into mechanical design, specializing in low carbon steel dynamics. Currently, Dawit is on track to complete his PhD at Hokkaido University, Japan, in Aerospace and Mechanical Engineering. His doctoral research explores cutting-edge biomechanical engineering, aiming to enhance titanium alloys and biomimetic structures for bone and energy absorption applications. Dawit’s academic path reflects a dedication to advancing engineering solutions with global impact.

Professional Experience

Dawit Bogale Alemayehu has accumulated a diverse range of experiences in academia and research. He began his career as a Graduate Assistant and Assistant Lecturer at Bahir Dar University, Ethiopia, where he taught and supported laboratory classes in Mechanical Engineering. Dawit later transitioned to roles as a Lecturer, instructing courses such as Machine Drawing and Strength of Materials. His international experience includes positions as a Research Assistant at National Taiwan University of Science and Technology and National Cheng Kung University in Taiwan, where he contributed to CAD modeling, finite element analysis, and manuscript preparation. Currently, as a PhD Fellow at Hokkaido University, Japan, Dawit conducts cutting-edge research in biomechanical engineering, aiming to publish impactful findings in international journals and present at prestigious conferences.

Research Focus

Dawit Bogale Alemayehu’s research spans several prominent areas in engineering and materials science, focusing extensively on biomechanical and biomimetic engineering. His work explores innovative applications of advanced manufacturing techniques like Fused Filament Fabrication (FFF) to create bioinspired lattice structures for enhanced energy absorption. Additionally, he conducts Finite Element Analysis (FEA) studies to optimize dental implants with biomimetic trabecular bone designs. Alemayehu’s research also delves into improving the biological and mechanical properties of materials such as pure titanium through processes like Equal Channel Angular Pressing (ECAP) and Micro-Arc Oxidation. His contributions emphasize the intersection of engineering innovation and biomedical applications, aiming to advance both theoretical understanding and practical applications in these fields. 🌟

Publication Top Notes