Mr. Kamal Reddad | Advanced Materials Engineering | Research Excellence Award
Ibn Tofail University Kenitra | Morocco
Kamal Reddad is a doctoral researcher in computational materials science specializing in hydrogen storage materials for sustainable energy applications. He is currently pursuing a PhD at the National School of Applied Sciences (ENSA), Ibn Tofail University, with a strong academic background in physics, holding a master’s degree in matter and radiation and a bachelor’s degree in physics with a focus on energetics. His research centers on magnesium hydride (MgH₂), where he investigates hydrogen desorption mechanisms using density functional theory (DFT), predictive temperature programmed desorption (TPD) modeling, and kinetic Monte Carlo (KMC) simulations. His work emphasizes the role of transition-metal doping and vacancy defects in enhancing hydrogen release kinetics, contributing to multiscale frameworks that bridge atomistic insights with macroscopic behavior. He has authored several peer-reviewed journal articles in high-impact Q1 and Q2 journals and actively contributes to the scientific community as a peer reviewer. In recognition of academic excellence, he received the UM5 Excellence Prize during his master’s studies. Overall, his research aims to advance first-principles-driven materials design for next-generation hydrogen storage technologies and clean energy systems.
36
4
3
Citations
Documents
h-index
Featured Publications
Enhancing Hydrogen Desorption in MgH2: A DFT Study on the Effects of Copper and Zinc Doping
K. Reddad, H. Labrim, D. Zejli, R. El Bouayadi.
International Journal of Hydrogen Energy, 2024, 87, 1474–1479. (Citations: 26)
Predictive Modeling of Temperature Programmed Desorption (TPD) in Magnesium Hydride MgH2
K. Reddad, H. Labrim, R. El Bouayadi.
Fuel, 2026, 403, 136152. (Citations: 5)
Vacancy Defects and Mo Doping Synergy in MgH2: A DFT Study on Hydrogen Desorption and Electronic Enhancement
K. Reddad, H. Labrim, R. El Bouayadi.
International Journal of Hydrogen Energy, 2025, 157, 150454. (Citations: 5)
Kinetic Monte Carlo Simulations of Hydrogen Desorption: The Influence of Rhodium in MgH2
K. Reddad, H. Labrim, R. El Bouayadi.
Bulletin of Materials Science, 2026, 49(1), 7. (Accepted)