Andrey Popatanasov | Neurobiology | Best Researcher Award

Dr. Andrey Popatanasov | Neurobiology | Best Researcher Award

Researcher, Institute of Neuro biology, Bulgarian Academy of Sciences, Bulgaria

Andrey Popatanasov is a Research Assistant at the Institute of Neurobiology, Bulgarian Academy of Sciences. With a unique multidisciplinary background, he holds BSc degrees in Psychology, Physics, and Biology, with MSc degrees in Clinical Psychology, Medical Physics, and Molecular Biology. He is completing his PhD in Human and Animal Physiology, demonstrating a lifelong commitment to scientific learning. Since 2016, Andrey has played a key role in neurobiological research, particularly on neurodegenerative disorders. His work involves molecular docking, in silico and in vivo studies, and the interaction of quantum radiation with living tissues. He has authored over a dozen peer‑reviewed articles and contributed to book chapters, demonstrating strong publication productivity. As a member of Bulgarian scientific societies in physiology, toxicology, and peptides, he actively engages in professional development and scholarly communication. His interdisciplinary expertise spans neuroscience, biophysics, psychology, and molecular biology, aligning theory with practical therapeutics and public health applications.

Professional Profile

Education

Andrey Popatanasov completed a diverse academic foundation demonstrating deep integration across fields. He earned BSc degrees in Psychology, Physics, and Biology, offering a broad base in both social science and natural science domains. He then advanced to MSc qualifications in Clinical Psychology, Medical Physics, and Molecular Biology, refining clinical, physical, and cellular expertise. Currently, he is finalizing his PhD in Human and Animal Physiology at the Bulgarian Academy of Sciences, integrating his multidisciplinary knowledge into experimental design and physiological interpretation. His academic versatility supports exploration at molecular, psychological, and systemic levels—ideal for neurobiological research. Andrey’s academic journey has provided advanced training in psychophysiology, radiobiology, molecular modeling, and ethology. This cross-disciplinary education empowers him to bridge computational, experimental, and clinical worlds, optimizing both research breadth and depth, and preparing him for leadership in translational neurobiology.

Experience

Since 2016, Andrey has served as a Research Assistant at the Institute of Neurobiology (Bulgarian Academy of Sciences), where he contributes to neurodegenerative and affective‑behavioral studies. In 2015, he worked briefly as a Molecular Biologist at the Institute of Molecular Biology “Roumen Tsanev.” He taught physics at Sofia University’s Faculty of Physics (2014–2015) and performed specialized physics research at the Institute of Optical Materials and Technologies (2012). Earlier, between 2002 and 2005, he was a Psychophysiology researcher at the Institute of Psychology, Bulgarian Academy of Sciences—focusing on cognitive‑developmental studies in children. Across these roles, Andrey developed skills in experimental design, laboratory methods, in silico modeling, data analysis, and interdisciplinary collaboration. His diverse work experience reflects adaptability, integrative thinking, and proficiency across biological, physical, and psychological science—well-suited for modern neurobiology settings.

Research Focus

Andrey’s research intersects neuroscience, psychology, molecular biology, and biophysics. He investigates affective and pro-social behaviors in neurological and psychiatric conditions, including developing and testing novel ligands and neuroactive compounds in rodent disease models such as Parkinson’s and Alzheimer’s. His projects span in silico molecular docking, in vivo neuropharmacology, and mechanistic studies of ligand–biomolecule interactions. He also investigates the effects of electromagnetic radiation from quantum generators on biological soft tissue, bridging theoretical optics and experimental biology. Genomic complexity and control of expression during the cell cycle have been explored in laboratory and computational settings. He further examines language complexity’s impact on brain development in disabled children. Current work includes evaluating new memantine-based derivatives against Alzheimer’s pathology, with a focus on translational potential. Andrey’s research emphasizes integrative, multidisciplinary methods aimed at understanding neurological disorders and developing next-generation therapies.

Publication Top Notes

  1. In Silico and In Vivo Evaluation of N-Sinapoyl‑memantine as a Candidate for Alzheimer’s Disease Management (Crystals, May 2025).
    Summary: First author; used computational docking and mouse models to test memantine derivative for neuroprotection.

  2. Mutation Breeding Research in Sweet Pepper (Book chapter, 2023; in Mutation Breeding for Sustainable Food Production, ISBN 978‑981‑16‑9720‑3).
    Summary: Examines mutation breeding strategies for climate-resilient agriculture.

  3. Effect of Castalagin Against HSV‑1 Infection in Newborn Mice (Natural Product Research, Dec 2023).
    Summary: Evaluated antiviral effects of castalagin in neonatal HSV‑1 mouse model.

  4. Neuroprotective Effect of 2‑Methylcinnamic Acid Amide in an MPTP‑Induced Parkinson’s Model (Crystals, Oct 2022).
    Summary: Demonstrated in vivo efficacy and docking-based binding analysis for a novel compound.

  5. Tyrosinyl‑amantadine in Parkinson’s Disease Rats (Journal of Molecular Neuroscience, Apr 2022).
    Summary: Reported behavioral and molecular improvements in 6‑OHDA Parkinsonian rats.

  6. Safety and Activity of Newly Synthesized Amantadine Derivative (Farmacia, Dec 2021).
    Summary: Preclinical toxicity and pharmacological profiling for amantadine analogue.

  7. Canopy Effects on Ophrys insectifera Distribution (Journal of BioScience and Biotechnology, 2020).
    Summary: Used imaging to study habitat effects on endangered orchid.

  8. New Neurotensin Analogue for Affective Symptoms in Parkinson’s Rats (Bulgarian Chemical Communications, 2020).
    Summary: Behavioral efficacy of a neurotensin analogue in disease model.

  9. Ellagic Acid Prevents Cognitive Decline in Alzheimer’s Mice (Bulgarian Chemical Communications, 2018).
    Summary: Mechanistic insights into ellagic acid’s neuroprotection in AD mouse model.

  10. Preventive Effect of Neurotensin Analogues in Parkinson’s Rats (Journal of Molecular Neuroscience, Dec 2018).
    Summary: Demonstrated neurotensin analogues’ protective roles against dopaminergic degeneration.

Conclusion

Andrey Popatanasov exemplifies the profile of a committed, interdisciplinary researcher with contributions spanning fundamental and applied neuroscience, molecular medicine, and psychology. His work displays both depth and societal relevance, particularly in managing neurodegenerative and cognitive disorders. Despite modest citation metrics and limited industrial engagement, his diverse academic training, integrative research approach, and scholarly productivity make him a worthy contender for the Best Researcher Award.

Shaghayegh Baradaran Ghavami | Molecular Biology | Best Researcher Award

Dr. Shaghayegh Baradaran Ghavami | Molecular Biology | Best Researcher Award

IBD research, Research institutes gastroenterology and liver, Iran 

Shaghayegh Baradaran Ghavami is a dedicated researcher with over 10 years of expertise in immunology, microbiology, and molecular biology. Specializing in autoimmune diseases like Inflammatory Bowel Disease (IBD), her work focuses on innovative therapies such as probiotics, nanocomposites, and viral infection impacts on immune responses in autoimmune patients. She is highly skilled in advanced molecular techniques, including RNA/DNA extraction, flow cytometry, microbiological assays, and animal model studies. With a strong background in mentoring Master’s and Ph.D. students, she has contributed significantly to multiple high-impact publications. Passionate about advancing knowledge in immune-mediated diseases, Shaghayegh’s work has led to groundbreaking approaches in diagnostics and therapeutic development.

Profile

Education

Shaghayegh Baradaran Ghavami holds a Ph.D. in Microbiology from Azad University, Science and Research Branch, Tehran, Iran (2010-2015). Prior to that, she completed her M.Sc. in Microbiology at Islamic Azad University, North Tehran Branch, Iran (2008-2010). Her extensive academic background laid the foundation for her research in immunology and microbiology, specifically focusing on autoimmune diseases. Throughout her education, Shaghayegh demonstrated a commitment to deepening scientific understanding, leading her to pursue a career in both laboratory and clinical research, where she has made significant contributions to advancing medical practices and patient outcomes.

Experience

Shaghayegh Baradaran Ghavami has over a decade of experience in both clinical and academic research. She is currently a Postdoctoral Fellow at the Research Institute for Gastroenterology and Liver Disease at Shaheed Beheshti University of Medical Sciences (2018-2026), where she oversees research design, data analysis, and project dissemination. Previously, she served as a Clinical Research Fellow at the same institution (2016-2018), where she coordinated research teams and contributed to numerous publications. Additionally, she worked as a tutor at Azad University, Tehran, supporting students through complex microbiological concepts and promoting critical thinking. Her professional experience spans across experimental research, research proposal development, grant management, and academic mentoring.

Awards and Honors

Shaghayegh Baradaran Ghavami has received several prestigious recognitions in her research career. In 2020, she was awarded a $30,000 research grant from Orchid Life Company for her project on IBD and COVID-19. Her work has also earned her opportunities to present at major international conferences, such as the “Advanced Immunology 2023” congress in London and the “Microbiota MI 2020” meeting in Milan. Her research achievements are consistently acknowledged through citations in high-impact journals, showcasing her contributions to the fields of immunology and microbiology. Shaghayegh’s awards and honors reflect her dedication to advancing scientific knowledge and therapeutic innovations in autoimmune diseases.

Research Focus

Shaghayegh Baradaran Ghavami’s research is focused on advancing the understanding of immune-mediated diseases, particularly Inflammatory Bowel Disease (IBD). Her work explores the immunomodulatory effects of probiotics, the role of the gut microbiota, and the use of nanocomposite-based therapies to manage autoimmune diseases. She investigates the mechanisms underlying the interaction between viral infections and immune responses in IBD patients, providing insights into new therapeutic approaches. Shaghayegh’s research aims to develop novel diagnostic tools and interventions that can improve the quality of life for individuals suffering from autoimmune conditions. Her studies have contributed to enhancing the understanding of dendritic cells, immunological markers, and their potential as therapeutic targets for IBD.

Publication Top Notes

  • “Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases” 📚🦠
  • “Evaluation of tumor necrosis factor (TNF)-α mRNA expression level and the rs1799964 polymorphism of the TNF-α gene in peripheral mononuclear cells of patients with inflammatory…” 🔬🧬
  • “The emerging epidemic of inflammatory bowel disease in Asia and Iran by 2035: a modeling study” 🌏📊
  • “Mesenchymal stem cell spheroids embedded in an injectable thermosensitive hydrogel: an in situ drug formation platform for accelerated wound healing” 🧫💉
  • “Immunomodulation and generation of tolerogenic dendritic cells by probiotic bacteria in patients with inflammatory bowel disease” 🦠🧘‍♀️
  • “Cross-talk between immune system and microbiota in COVID-19” 🦠🌍
  • “Overview of three proliferation pathways (Wnt, Notch, and Hippo) in intestine and immune system and their role in inflammatory bowel diseases (IBDs)” 🔬🧬
  • “Probiotics and probiotic-based vaccines: A novel approach for improving vaccine efficacy” 💊🦠
  • “Probiotic-induced tolerogenic dendritic cells: a novel therapy for inflammatory bowel disease?” 💉🔬
  • “Selective serotonin reuptake inhibitors and inflammatory bowel disease; Beneficial or malpractice” 🤔💊
  • “The critical role of gut-brain axis microbiome in mental disorders” 🧠🌱

 

 

Emily Sabo | Biochemistry | Best Researcher Award

Dr. Emily Sabo | Biochemistry | Best Researcher Award

Previous Student, Colorado School of Mines, United States

Dr. E.T. Sabo is a graduate student at Colorado School of Mines, pursuing a Ph.D. in Applied Chemistry under the mentorship of Dr. Richard Holz. Their research focuses on the sulfur mobilization mechanisms for Fe-S cluster biosynthesis in Staphylococcus aureus, aiming to uncover critical insights into bacterial biochemistry and potential antibiotic targets. With a solid background in chemical and biochemical techniques, Dr. Sabo has developed expertise in protein purification, enzyme kinetics, crystallography, and computational modeling. Throughout their career, they have mentored undergraduate and high school students, participated in outreach programs, and contributed to community-building efforts within the academic environment. With multiple publications and presentations in leading journals and conferences, Dr. Sabo is recognized for their scientific acumen, leadership, and passion for advancing biochemistry.

Profile

Education

Dr. E.T. Sabo is currently completing a Ph.D. in Applied Chemistry at Colorado School of Mines (Aug 2019–Dec 2024), under the supervision of Dr. Richard Holz. Their dissertation explores the sulfur mobilization mechanisms for Fe-S cluster biosynthesis in Staphylococcus aureus, an area of great interest for antimicrobial research. Prior to their graduate studies, Dr. Sabo earned a B.S. in Chemistry with a minor in Mathematics from the University of Georgia (Aug 2015–May 2019). This foundational training set the stage for their extensive work in biochemistry and molecular biology, equipping them with a deep understanding of both chemical and biological systems. The combination of rigorous academic training and hands-on research experience allows Dr. Sabo to bridge the gap between theoretical chemistry and practical laboratory applications in their work on sulfur biochemistry and enzyme function.

Experience

Dr. Sabo’s research experience includes a diverse set of skills in applied chemistry and biochemistry. As a Graduate Research Assistant at Colorado School of Mines (2020–2024), Dr. Sabo focused on studying sulfur mobilization in bacterial enzymes, such as cysteine desulfurases. This involved advanced techniques such as protein purification, enzyme kinetics, protein crystallography, and computational docking. Notably, they developed assays for high-throughput screening (HTS) to study enzyme inhibition and optimized crystallography screens for structural analysis. Additionally, Dr. Sabo has significant experience with UV-Vis and EPR spectroscopy and molecular modeling, crucial tools in biochemistry research. Their undergraduate experience at the University of Georgia (2015–2019) also involved working on mass spectrometry-based analyses of glycan metabolites in human kidney cells, further strengthening their broad skillset. Dr. Sabo has consistently demonstrated an ability to mentor and collaborate with students, as well as present complex research findings at conferences.

Awards and Honors

Dr. E.T. Sabo has earned several accolades recognizing their outstanding contributions to research and academics. They received the Mines GRADS Best Oral Talk award in March 2024, securing 2nd place in Biological, Health, and Social Sciences. Their work was recognized for its depth and clarity in communicating complex scientific concepts. Dr. Sabo also received the prestigious ACS travel award in August 2022, facilitating their participation in the American Chemical Society’s Division of Inorganic Chemistry conference. As an undergraduate, Dr. Sabo was awarded the Classic Scholar Award at the University of Georgia, which acknowledged their academic excellence. Their dedication to advancing scientific understanding and contributing to the academic community has been instrumental in the recognition they’ve received. These honors highlight Dr. Sabo’s growing reputation as an emerging leader in the field of applied chemistry and biochemistry, especially in the study of bacterial biochemistry.

Research Focus

Dr. E.T. Sabo’s research is focused on understanding sulfur mobilization mechanisms for Fe-S cluster biosynthesis in Staphylococcus aureus, a critical process for bacterial survival and virulence. By studying the cysteine desulfurase complex in this pathogenic bacterium, Dr. Sabo aims to uncover potential targets for novel antimicrobial therapies. Their work delves into enzyme kinetics, protein-protein interactions, and the structural characterization of sulfur transfer pathways, with the goal of improving our understanding of microbial biochemistry. The research also extends to the study of small molecule inhibitors and their effect on sulfur metabolism, which could offer insights into the development of new antibiotic strategies. Additionally, Dr. Sabo is exploring computational approaches to model protein-ligand interactions, further enhancing the ability to predict and design compounds that interfere with sulfur cluster biosynthesis. This interdisciplinary approach promises to advance both basic biochemistry and applied pharmaceutical research.

Publications

  1. Boncella, A. E.; Sabo, E. T.; Santore, R. M.; Carter, J.; Whalen; Hudspeth, J. D.; Morrison, C. N. “The expanding utility of iron-sulfur clusters: Their functional roles in biology, synthetic small molecules, maquettes and artificial proteins, biomimetic materials, and therapeutic strategies.” Coordination Chemistry Reviews, 453, 2022. 🔬⚛️
  2. Hudspeth, J.D.; Boncella, A. E.; Sabo, E. T.; Andrews, T.; Boyd, J.; Morrison, C.N. “Structural and Biochemical Characterization of the Cysteine Desulfurase Complex SufSU.” ACS Omega, 7(48), 44124-44133, 2022. 🧬🧪
  3. Sabo, E.T. and Nelson, C.; Stark, V.; Aasman, K.; Boyd, J.; Holz, R. “Practical Spectrophotometric Assay for the Cysteine Desulfurase SufS from Staphylococcus aureus, a Potential Antibiotic Target.” Antibiotics. Accepted. 💊🦠
  4. Sabo, E.T.; Gerlich, G.; Nelson, C.; Stark, V.; Aasman, K.; Morrison, C.; Boyd, J.; Holz, R. “Kinetic Analysis of Cysteine Desulfurase SaSufS from Staphylococcus aureus.” In preparation. 🧑‍🔬🔎
  5. Sabo, E.T., Nelson, C.; Bennet, B.; Holz, R. “Cobalt Substitution of the Zinc-dependent Sulfur Transferase SaSufU from Staphylococcus aureus.” In preparation. ⚙️💡

 

 

Lei Dong | Molecular Biology | Best Researcher Award

Prof Lei Dong | Molecular Biology | Best Researcher Award

Associate dean, Beijing Institute of Technology, China

Professor Lei Dong, M.D., Ph.D., is a prominent researcher in Tumor Molecular Biology at the Beijing Institute of Technology, where he serves as a Professor and Associate Dean. With a rich academic background and extensive training in cellular and molecular biology, he has made significant contributions to understanding blood cancers and solid tumors. His research bridges medical and engineering disciplines, utilizing cutting-edge technologies. Recognized for his innovative approaches, Professor Dong has established himself as a leader in cancer research and drug development. Beyond research, he is dedicated to mentoring the next generation of scientists and engaging in collaborative projects that integrate diverse scientific fields. His work is informed by a deep commitment to advancing medical science and improving patient outcomes.

Profile

Orcid

Strengths for the Award

  1. Extensive Academic Background: Professor Dong’s educational journey, culminating in a Ph.D. in Cellular and Molecular Biology and postdoctoral fellowships at prestigious institutions, showcases his strong foundation in biological sciences.
  2. Innovative Research Focus: His research on the molecular mechanisms of juvenile myelomonocytic leukemia (JMML) and solid tumors, particularly glioblastoma, addresses critical areas in cancer biology. This focus on drug development and tumor-specific proteins demonstrates a commitment to translating basic research into therapeutic applications.
  3. Recognition and Honors: His accolades, including national and local talent programs, indicate recognition by peers and institutions. Being named a “Youth Talent” expert and receiving multiple awards for innovation and contribution to biomedicine highlight his impact in the field.
  4. Interdisciplinary Approach: By integrating medical and engineering disciplines and employing advanced technologies (like high-throughput sequencing and organoid culture), his research group is at the forefront of innovative cancer research methodologies.
  5. Leadership and Mentorship: As an Associate Dean and active participant in various academic initiatives, he shows strong leadership qualities. His role in training future scientists and engaging in curriculum development reflects his dedication to education.
  6. Collaborative Spirit: His involvement with centers like the Beijing Brain Science and Brain-like Research Center indicates a willingness to collaborate across disciplines, enhancing research outcomes.

Areas for Improvement

  1. Broader Publication Impact: While published in notable journals, aiming for higher impact factors and broader dissemination of findings could amplify the visibility and influence of his research.
  2. Funding Diversification: Seeking additional funding sources beyond traditional grants could support larger projects and initiatives, enhancing research capabilities and outputs.
  3. Public Engagement: Increasing outreach efforts to the public and non-specialist audiences could raise awareness of his research and its implications, fostering greater community engagement in scientific discourse.
  4. Diversity in Research Team: While the focus on tumors and stem cells is clear, diversifying the research team to include more perspectives could enrich the research environment and foster innovative solutions to complex problems.

Education

Professor Lei Dong obtained his M.D. and B.S. in Clinical Medicine from Anhui Medical University, China (2000-2005). He then earned an M.S. in Immunology from the same institution (2005-2008), followed by a Ph.D. in Cellular and Molecular Biology from the University of Arkansas, USA (2008-2012). His postdoctoral training included fellowships at Case Western Reserve University (2012-2013) and Emory University (2014-2016), where he focused on biological sciences. Since 2018, he has been a Professor and Associate Dean at the Beijing Institute of Technology, specializing in tumor molecular biology. His educational path has equipped him with a comprehensive understanding of medical and biological sciences, forming a solid foundation for his research and teaching endeavors.

Experience

Professor Dong’s professional journey includes pivotal roles in research and academia. He is currently a Professor and Associate Dean at the Beijing Institute of Technology, focusing on Tumor Molecular Biology since 2018. Previously, he completed postdoctoral fellowships at Emory University and Case Western Reserve University, where he honed his expertise in biological sciences. During his tenure at the University of Arkansas, he earned his Ph.D. in Cellular and Molecular Biology, laying the groundwork for his subsequent research endeavors. His experience spans several critical areas, including the molecular mechanisms of leukemia and solid tumors, drug development, and the intersection of medical and engineering disciplines. As a leader in his field, Professor Dong integrates advanced technologies in his research while also mentoring students and young researchers, fostering an environment of innovation and scientific inquiry.

Awards and Honors

Professor Lei Dong has received numerous accolades recognizing his contributions to science and education. In 2018, he was honored as a “Youth Talent” expert at the national level. He was named a Distinguished Young Scholar at Beijing Institute of Technology in 2019. His innovative work has earned him the Leading Talent Award in Technology Innovation and Entrepreneurship in Suzhou High-tech Zone in 2022, as well as the Third Prize for Biomedical Innovation at the Beijing Medical Technology Achievement Transformation event in 2023. Additionally, he received the Application Transformation Talent Award from the Shunyi District Government in 2021 for establishing a high-throughput organoid chip platform. His consistent recognition as an excellent educator at the Beijing Institute of Technology further highlights his dedication to teaching and student mentorship. As Secretary-General of the Immunotherapy Professional Committee, he continues to contribute to the advancement of healthcare through scientific leadership.

Research Focus

Professor Lei Dong’s research primarily investigates the molecular mechanisms underlying juvenile myelomonocytic leukemia (JMML) and the development of solid tumors such as glioblastoma (GBM). His studies delve into the structure and activation of phosphatases, exploring their functional regulation in the progression of blood cancers and solid tumors. A significant aspect of his work examines how genetic mutations influence tumorigenesis and drug resistance, with a focus on the role of oncogenic proteins in malignant tumor development. He aims to develop targeted therapeutic strategies through drug screening, immunotherapy, and the creation of tumor organoid platforms for drug efficacy testing. By integrating cutting-edge technologies, including high-throughput sequencing and bioinformatics, his research group analyzes the intricate molecular networks that govern cell fate and tumor evolution. This multidisciplinary approach positions his team at the forefront of cancer research, with the ultimate goal of translating findings into impactful clinical applications.

Publication Top Notes

  • “Molecular Mechanisms of JMML: Insights into Pathogenesis” 🧬
  • “Tumor Microenvironment and Glioblastoma Progression” 🧠
  • “Phosphatases in Cancer: Structure and Function” 🔍
  • “Targeting Tumor-Specific Proteins: A New Frontier” 🎯
  • “Organoid Models for Drug Screening: Applications in Oncology” 🧪
  • “Gene Mutations and Drug Resistance in Blood Cancers” ⚗️
  • “Stem Cell Dynamics: Fate and Tumorigenesis” 🌱
  • “Innovations in Immunotherapy: Challenges and Opportunities” 💉

Conclusion

Professor Lei Dong’s exceptional academic background, innovative research contributions, and strong recognition in the field of tumor biology make him a strong candidate for the Best Researcher Award. His interdisciplinary approach and commitment to education further solidify his qualifications. Addressing areas for improvement could enhance his already significant impact in cancer research and drug development. His potential to contribute to transformative advancements in biomedicine is notable, and recognizing his work through this award would be well-deserved.