Abdulkafi Mohammed Saeed | Mathematics | Best Researcher Award

Prof. Dr. Abdulkafi Mohammed Saeed | Mathematics | Best Researcher Award

Director of the Postgraduate Program in the Mathematics Department at Qassim University, Qassim University, Saudi Arabia

Prof. Dr. Abdulkafi Mohammed Saeed is a highly experienced professor of Applied Mathematics at Qassim University, Saudi Arabia, with a research focus on Numerical Partial Differential Equations, Fluid Dynamics, and Fractional Calculus. He earned his Ph.D. in Applied Mathematics from Universiti Sains Malaysia and has over 15 years of teaching experience. Prof. Saeed has published more than 130 papers in leading international journals, contributed to various research conferences, and collaborated extensively with global researchers. Additionally, he has expertise in academic quality management and accreditation, having been involved in the quality assurance processes of several mathematics programs. Prof. Saeed also offers his services as a reviewer for numerous reputable journals, making significant contributions to the academic community. He is proficient in multiple languages and programming tools, including MATLAB and C++.

Profile

Education

Prof. Dr. Abdulkafi Mohammed Saeed holds a Ph.D. in Applied Mathematics from Universiti Sains Malaysia (2011), focusing on Partial Differential Equations. He completed his Master’s degree in Applied Mathematics from Hyderabad Central University in India (2005) and obtained his Bachelor’s degree in Mathematics, Physics, and Computer Science from Hodeidah University, Yemen (1998). His educational background laid the foundation for his expertise in applied mathematics, particularly in differential equations, fluid dynamics, numerical analysis, and computational methods. Prof. Saeed’s academic journey also includes significant post-doctoral work at the University of Sciences Malaysia, further enhancing his research capabilities. He has continued to develop his academic career through his teaching roles and extensive research contributions in the field.

Experience

Prof. Dr. Abdulkafi Mohammed Saeed has over 15 years of experience in academia, particularly in teaching and research in Applied Mathematics. He has taught a wide range of undergraduate and postgraduate courses in differential equations, numerical analysis, fluid dynamics, and computational mathematics at Qassim University, Saudi Arabia. In addition to his teaching role, he holds several leadership positions, such as Head of Quality Assurance at Qassim University’s Department of Mathematics. He has also served as a consultant for the university’s quality unit and been involved in program development, ensuring academic excellence in mathematics education. Prof. Saeed has been a reviewer for numerous prestigious journals and a member of editorial boards. His post-doctoral research at Universiti Sains Malaysia and his early academic career in Yemen also contribute to his broad and diverse experience in the field.

Awards and Honors

Prof. Dr. Abdulkafi Mohammed Saeed has received numerous awards and recognitions for his academic contributions. He was awarded scholarships by the Government of Yemen for his Master’s and Ph.D. studies at Hodeidah University and Universiti Sains Malaysia. Prof. Saeed’s research excellence earned him the “Hadiah Sanggar Sanjung” award in 2011 and 2012 for publishing impactful articles in ISI journals. He also won the third prize in the 1st Postgraduate Quran Recitation Competition at Universiti Sains Malaysia in 2010. These honors reflect his exceptional academic achievements and contributions to the field of applied mathematics. Additionally, Prof. Saeed’s work has been recognized by multiple academic organizations, contributing to his reputation as a leader in the mathematics community.

Research Focus

Prof. Dr. Abdulkafi Mohammed Saeed’s research primarily focuses on Applied Mathematics, with a particular emphasis on Partial Differential Equations (PDEs), Fluid Dynamics, and Fractional Calculus. His work spans numerical modeling, applied and computational mathematics, and the use of functional analysis to solve complex mathematical problems. Prof. Saeed has made significant contributions to the understanding of fluid flow, thermoelasticity, and mathematical computing. His research also includes investigating fractional PDEs and their real-world applications. He has published over 130 papers in international journals and has collaborated with numerous global researchers. Prof. Saeed’s interest in mathematical modeling and numerical methods has driven advancements in computational techniques, particularly in areas related to fluid dynamics and thermoelasticity. He continues to explore new mathematical approaches and models to address complex phenomena in science and engineering.

Publications (Single-line format with emojis):

  1. “Analysis of the Thomson and Troian velocity slip for the flow of ternary nanofluid past a stretching sheet” 🧑‍🔬📑
  2. “Thermophoretic particle deposition effect on a squeezed flow of radiative Jeffrey fluid past a sensor surface with uniform heat source/sink and chemical reaction” 🔬💧
  3. “The series solutions of fractional foam drainage and fractional modified regularized long wave problems” 📚🌊
  4. “A new solution of the nonlinear fractional logistic differential equations utilizing efficient techniques” 🔢📈
  5. “Bioconvective Hybrid Flow with Microorganisms Migration and Buongiorno’s Model under Convective Condition” 🌱💨
  6. “Significance of Hall current and Ion slip in a three-dimensional Maxwell nanofluid flow over rotating disk with variable characteristics and gyrotactic microorganisms” 🔄💡
  7. “Comparative study of hybrid nanofluid flows over a bidirectional stretched surface with the impact of Hall current and ion slip” 🔬⚡
  8. “Model-based comparison of hybrid nanofluid Darcy-Forchheimer flow subject to quadratic convection and frictional heating with multiple slip conditions” 🖥️🌡️
  9. “Wall jet nanofluid flow with thermal energy and radiation in the presence of power-law” 💨☀️
  10. “Buckling and dynamic behavior of uniform and tapered woven carbon/jute fiber reinforced polyester hybrid composite beams” 🌍🔧

 

Dr. Mohammed Elghandouri | Applied Mathematics |

Dr. Mohammed Elghandouri | Applied Mathematics | Best Researcher Award

Postdoctoral position , Inria de Lyon, France.

Dr. Mohammed Elghandouri is a Moroccan-born researcher specializing in applied mathematics and computer science. He holds a Ph.D. from a joint doctoral program between Cadi Ayyad University (Morocco) and Sorbonne University (France), focusing on controllability and dynamic systems. Passionate about mathematical modeling, his work spans across various disciplines including epidemiology, optimal control, and integrodifferential equations. Currently, Dr. Elghandouri is a postdoctoral researcher at the Centre INRIA de Lyon, France, contributing to mathematical modeling of vector-borne diseases. With a deep commitment to research and education, he actively participates in conferences, training programs, and scientific communities globally.

Profile 

Education 🎓

Dr. Elghandouri completed his Ph.D. in applied mathematics and computer science through a joint doctoral program between Cadi Ayyad University in Morocco and Sorbonne University in France, where his thesis focused on controllability for nonlocal integrodifferential equations. Prior to his Ph.D., he obtained a Master’s degree in Mathematical Modeling and Dynamic Systems Analysis from Cadi Ayyad University. He also holds an International Master’s degree in Mathematics and Applications from Côte d’Azur University, France. His academic journey began with a Bachelor’s degree in Mathematical Sciences and Applications at Cadi Ayyad University. He has also attended numerous training courses and participated in workshops worldwide to refine his research and teaching skills.

Experience 💼

Dr. Elghandouri has extensive research experience, particularly in the areas of mathematical modeling, dynamic systems, and optimal control. He is currently a postdoctoral researcher at the Centre INRIA de Lyon, where he works on mathematical models for vector-borne diseases. Throughout his career, Dr. Elghandouri has collaborated with prestigious institutions, including Sorbonne University and Cadi Ayyad University, and has contributed to international conferences, workshops, and seminars in the fields of applied mathematics, epidemiology, and control theory. His research stay in France allowed him to enhance his expertise in complex systems modeling. Additionally, he has participated in various scientific and training activities, building strong interdisciplinary research connections.

Research Focus 🔬

Dr. Elghandouri’s research is focused on the controllability of dynamic systems, with special attention to integrodifferential equations and their applications in mathematical and computer modeling. His work encompasses topics like optimal control, epidemiological modeling, and the modeling of complex systems, particularly for public health applications such as vector-borne diseases. He is interested in the theoretical aspects of well-posedness, asymptotic behavior, and approximate controllability in infinite-dimensional systems, including those with nonlocal conditions. His work is interdisciplinary, bridging applied mathematics with epidemiology, environmental sciences, and computational modeling. Dr. Elghandouri is dedicated to exploring new mathematical models that can solve real-world problems in public health and beyond.

Publications 📚

  • Approximation of Mild Solutions of Delay Integro-Differential Equations on Banach Spaces
  • Approximate Controllability for Some Integrodifferential Evolution Equations with Nonlocal Conditions
  • Well-Posedness and Approximate Controllability for Some Integrodifferential Evolution Systems with Multi-Valued Nonlocal Conditions
  • Exploring Well-Posedness and Asymptotic Behavior in an Advection-Diffusion-Reaction (ADR) Model
  • Optimal Control of General Impulsive VS-EIAR Epidemic Models with Application to COVID-19
  • Approximate Controllability for Nonautonomous Integrodifferential Equations with State-Dependent Delay
  • On The Approximate Controllability for Fractional Neutral Inclusion Systems With Nonlocal Conditions
  • Regional Control Strategies for a Spatiotemporal SQEIAR Epidemic Model: Application to COVID-19
  • Approximate Controllability for Some Nonlocal Integrodifferential Equations in Banach Spaces
  • Dynamical Analysis and Numerical Simulation of a Reaction-Diffusion Model for Microbial Decomposition of Organic Matter in 3D Soil Structure