Assoc. Prof. Dr. Muhammad Amer Qureshi | Biomedical Engineering | Best Researcher Award
University of Nizwa | Oman
Associate Professor Muhammad Amer Qureshi is a distinguished mathematician. He holds a Ph.D. in Mathematics , an M.S. in Engineering Sciences , and an M.Sc. in Computational Mathematics . His academic career has spanned roles as Associate Professor at the University of Nizwa (Oman), Associate and Assistant Professor at KFUPM (Saudi Arabia), and earlier appointments at GIK Institute and the University of Auckland. His research interests lie in numerical methods for ordinary differential equations (including one-step and multistep integrators, symplectic schemes), computational fluid dynamics (especially nano-hybrid fluids and heat transfer modeling), and the application of symmetries in general relativity (Noether’s theorem, space–time symmetries). He has supervised numerous undergraduate and graduate research projects, secured multiple externally funded grants, and published extensively in ISI/Scopus journals. Among his honors are repeated recognition in the Top 2% of global scientists, an Excellence in Teaching Award, and merit-based scholarships for Ph.D. and MS studies. In sum, his multifaceted contributions to theory, computation, and pedagogy mark him as a leading researcher and educator dedicated to advancing mathematics and engineering science.
Profile : Google Scholar
Featured Publications
Qureshi, M. A., & Hussain, S., & Sadiq, M. A. (2021). Numerical simulations of MHD mixed convection of hybrid nanofluid flow in a horizontal channel with cavity: Impact on heat transfer and hydrodynamic forces. Case Studies in Thermal Engineering, 27, 101321.
Qureshi, M. A. (2022). Thermal capability and entropy optimization for Prandtl–Eyring hybrid nanofluid flow in solar aircraft implementation. Alexandria Engineering Journal, 61(7), 5295–5307.
Qureshi, M. A. (2020). Numerical simulation of heat transfer flow subject to MHD of Williamson nanofluid with thermal radiation. Symmetry, 13(1), 10.
Qureshi, M. A. (2021). A case study of MHD driven Prandtl–Eyring hybrid nanofluid flow over a stretching sheet with thermal jump conditions. Case Studies in Thermal Engineering, 28, 101581.
Shahzad, F., Jamshed, W., Ibrahim, R. W., Nisar, K. S., & Qureshi, M. A., et al. (2021). Comparative numerical study of thermal features analysis between Oldroyd-B copper and molybdenum disulfide nanoparticles in engine-oil-based nanofluids flow. Coatings, 11(10), 1196.