Workiye Getnet Abera | Chemical Engineering | Best Scholar Award

Mr. Workiye Getnet Abera | Chemical Engineering | Best Scholar Award

Lecturer, Debre Tabor university, Ethiopia

Workiye Getnet Abera is a dynamic and innovative Chemical Engineer from Addis Ababa, Ethiopia, specializing in modeling, simulation, and the development of biomass-based products. With over five years of academic and research experience, he currently serves as a Senior Lecturer and Researcher at Debre Tabor University. His journey began at Jimma University, where he earned both his BSc and MSc in Chemical Engineering with a focus on process engineering. Throughout his career, Workiye has demonstrated a passion for sustainable materials, publishing numerous papers in top-tier international journals and contributing actively as a reviewer and editorial board member. His hands-on industrial training at Fincha Sugar Factory enriched his practical knowledge, bridging the gap between theory and industry. As an academic with strong technical skills and a commitment to innovation, he continuously works toward developing eco-friendly engineering solutions that can address global sustainability challenges and promote cleaner production methods.

Profile

orcid

🎓 Education 

Workiye Getnet Abera pursued both his undergraduate and postgraduate education in Chemical Engineering at Jimma University, one of Ethiopia’s most prestigious institutions. He obtained his Bachelor of Science (BSc) degree in 2017, gaining a strong foundation in core engineering principles, fluid mechanics, thermodynamics, and chemical process design. Building on this, he continued his academic journey and received his Master of Science (MSc) in Chemical Engineering with a specialization in Process Engineering in 2020. His master’s research was focused on sustainable technologies and renewable resource utilization, particularly in polymer and biomass-based material synthesis. His academic training emphasized both theoretical rigor and practical application, equipping him with advanced knowledge in process modeling, simulation, and optimization techniques. His educational background, coupled with strong analytical and research skills, has laid a solid foundation for his professional and academic accomplishments, preparing him for impactful work in the chemical engineering and sustainability sectors.

🧪 Experience

Workiye has a diverse professional background combining teaching, research, and industrial experience. He currently works as a Senior Lecturer and Researcher at Debre Tabor University, where he leads research in polymer chemistry and additive manufacturing and delivers core chemical engineering courses. Before this, he served as a Lecturer and Researcher at Dilla University from 2020 to 2024, where he was actively engaged in curriculum development, mentoring students, and advancing research in sustainable processes and materials. His industry experience began with an internship at Fincha Sugar Factory in 2015, where he gained practical exposure to large-scale industrial operations, including sugar production and bioproduct processing. This blend of academia and industry has shaped him into a well-rounded professional. His experience across both academic institutions and industrial settings enables him to bridge theory and practice, nurturing a new generation of engineers while conducting impactful research that meets real-world needs.

🔬 Research Focus 

Workiye Getnet Abera’s research centers around sustainable materials engineering, biomass utilization, and process optimization. His work contributes to global environmental goals by creating value-added products from renewable and agro-industrial waste. His primary research interests include the synthesis and characterization of bioplastics, development of plant-based biolubricants, and formulation of gluten-free functional foods. He employs modeling, simulation, and design of experiments (DoE) techniques using tools such as Aspen Plus, MATLAB, Design Expert, and ANSYS to optimize chemical processes. Additionally, Workiye is exploring polymer chemistry and additive manufacturing to produce eco-friendly alternatives to conventional plastics. Through interdisciplinary collaboration and hands-on experimentation, he aims to develop green engineering solutions for food, pharmaceutical, and energy sectors. His work not only contributes to academic knowledge but also holds practical implications for local industries and sustainable development in Ethiopia and beyond. His forward-looking research aligns well with the goals of global climate action and circular economy.

📚 Publication Top Notes

  1. 🧴 Synthesis, Characterization, and Optimization of Antimicrobial Biolubricant from Ocimum lamiifolium and Lactic Acid – Heliyon, 2025

  2. 🍞 Quality Assessment of Gluten-Free Sorghum Bread with Sweet Lupin Flour – CYTA Journal of Food, 2024

  3. 🍪 Effect of Baking Conditions on Gluten-Free Biscuit from Groundnut Oilseed Cake and Teff – Cogent Food & Agriculture, 2024

  4. 🌿 Synthesis and Characterization of Bioplastic from Banana Peel Starch and Cellulosic Fiber – Biomass Conversion & Biorefinery, 2023

 

 

Xiangling Li | Engineering | Best Researcher Award

Dr. Xiangling Li | Engineering | Best Researcher Award

Research Associate, Dartmouth College, United States

Dr. Xiangling Li is an accomplished researcher in biomedical engineering, specializing in micro/nano manufacturing, wearable bioelectronics, and precision medical devices. He currently serves as an Assistant Research Fellow at Dartmouth College, where he focuses on integrating advanced materials and nanotechnology into medical applications. With a Ph.D. from Sun Yat-sen University and postdoctoral research at the University of Southern California, Dr. Li has contributed to cutting-edge innovations in biosensors, drug delivery, and flexible electronics. His groundbreaking research has led to numerous high-impact publications in Advanced Science, Nature Communications, Advanced Functional Materials, and ACS Applied Materials & Interfaces, accumulating hundreds of citations. Dr. Li’s expertise in interdisciplinary research enables the development of next-generation medical devices, improving patient care and diagnostics. His work in integrating electronics, materials science, and life sciences has positioned him as a leader in the field, driving innovations in biomedical engineering and translational medicine.

Profile

Google Scholar
Orcid

Education

Dr. Xiangling Li pursued his academic journey with a strong focus on biomedical engineering and materials science. He earned his Ph.D. in Engineering (Biomedical Engineering) from Sun Yat-sen University, China (2018–2022), where he conducted pioneering research under the guidance of Prof. Xi Xie. His doctoral research focused on developing smart nanomaterials and biosensors for medical applications. After completing his Ph.D., he joined the University of Southern California as a Postdoctoral Fellow (2022–2023) under Prof. Hangbo Zhao, where he advanced his work on flexible bioelectronics and precision medicine. Dr. Li is currently an Assistant Research Fellow at Dartmouth College (since 2023), working with Prof. Wei Ouyang on cutting-edge medical technologies. His diverse educational background has equipped him with expertise in nano/microfabrication, electronic biosensors, and biomedical device engineering, enabling him to make significant contributions to translational medicine and wearable healthcare solutions.

Experience

Dr. Xiangling Li has extensive experience in biomedical engineering, focusing on micro/nano fabrication, biosensors, and advanced medical devices. He is currently an Assistant Research Fellow at Dartmouth College (2023–Present), where he explores novel bioelectronic interfaces for healthcare applications. Previously, he was a Postdoctoral Fellow at the University of Southern California (2022–2023), where he contributed to research on flexible electronic systems for precision medicine. Dr. Li completed his Ph.D. at Sun Yat-sen University (2018–2022), where he developed groundbreaking microfabricated biosensors and drug delivery platforms. His research expertise spans interdisciplinary fields, including wearable diagnostics, nanotechnology-enabled therapeutics, and malleable electronics. With multiple high-impact publications and extensive collaborations across disciplines, Dr. Li’s contributions continue to shape the future of smart medical devices. His experience bridges academia and industry, enabling the development of innovative biomedical solutions that improve patient outcomes and healthcare monitoring.

Research Focus

Dr. Xiangling Li’s research is centered on micro/nano manufacturing technologies for biomedical applications. His work integrates flexible electronics, biosensors, and smart materials to develop next-generation medical devices. He specializes in wearable and implantable bioelectronics, focusing on precision drug delivery, transdermal biosensing, and real-time health monitoring. A key area of his research involves microneedle-based systems for minimally invasive glucose monitoring, intraocular pressure regulation, and intelligent drug release platforms. Additionally, he explores graphene-based biosensors, nanoneedle platforms, and soft bioelectronics for enhanced biomedical applications. His innovations in smart contact lenses, flexible supercapacitors, and biocompatible coatings contribute to the advancement of personalized medicine and point-of-care diagnostics. Dr. Li’s interdisciplinary approach, combining electronics, materials science, and life sciences, drives the development of high-performance biomedical devices. His research holds significant potential for revolutionizing non-invasive diagnostics, therapeutic monitoring, and next-generation wearable healthcare solutions.

Publications 📚

  • A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment
  • Intelligent wireless theranostic contact lens for electrical sensing and regulation of intraocular pressure
  • Reduced graphene oxide nanohybrid–assembled microneedles as mini-invasive electrodes for real-time transdermal biosensing
  • Smartphone-powered iontophoresis-microneedle array patch for controlled transdermal delivery
  • Nanoneedle platforms: the many ways to pierce the cell membrane
  • Electrodes derived from carbon fiber-reinforced cellulose nanofiber/multiwalled carbon nanotube hybrid aerogels for high-energy flexible asymmetric supercapacitors
  • Hierarchical graphene/nanorods-based H₂O₂ electrochemical sensor with self-cleaning and anti-biofouling properties
  • Emerging roles of 1D vertical nanostructures in orchestrating immune cell functions
  • Fe₃O₄ nanoparticles embedded in cellulose nanofiber/graphite carbon hybrid aerogels as advanced negative electrodes for flexible asymmetric supercapacitors
  • Wearable and implantable intraocular pressure biosensors: recent progress and future prospects

 

 

 

Alia Al-Ghosoun | Engineering and Technology | Best Researcher Award

Dr Alia Al-Ghosoun | Engineering and Technology | Best Researcher Award

Assistant professor, Philadephia University, Jordan

Dr. Alia Radwan Al-Ghosoun is an Assistant Professor in the Mechatronics Engineering Department at Philadelphia University, Jordan. With a deep passion for advanced engineering research, she holds a DPhil in Engineering from Durham University, UK, where her work focused on shallow water dynamics and adaptive control methods for hydrodynamic systems. Dr. Al-Ghosoun’s research spans fluid mechanics, computational modeling, and the application of artificial intelligence in engineering problems. She has worked as a post-doctoral researcher at Durham University and has held multiple academic positions at the University of Jordan, where she contributed to the development of energy-efficient systems and intelligent control techniques. Dr. Al-Ghosoun’s commitment to advancing knowledge in hydrodynamics and environmental modeling has resulted in impactful publications and contributions to numerical simulation and uncertainty quantification. She is passionate about improving the practical application of engineering solutions for environmental challenges.

Profile

Scopus

Strengths for the Award

  1. Advanced Academic Background:
    • Dr. Al-Ghosoun holds a Doctor of Philosophy in Engineering from Durham University, UK, where her research focused on shallow water flow dynamics and adaptive control techniques to improve the accuracy of these systems. This is a highly specialized field with significant implications in environmental modeling, water systems, and engineering, marking her as an expert in computational engineering and fluid dynamics.
    • Her post-doctoral research at Durham University further solidifies her expertise, particularly in understanding and quantifying uncertainty in numerical modeling of hydrodynamics, which is crucial for predicting real-world environmental phenomena.
  2. Impactful and Diverse Research Contributions:
    • Dr. Al-Ghosoun has published several peer-reviewed papers in high-impact journals such as Environmental Modelling and Software, Communications in Computational Physics, and International Journal of Computational Methods. These works cover areas such as uncertainty quantification, morphodynamics, and numerical simulation of shallow water flows and hydrosediment processes.
    • Her conference papers and book chapters demonstrate a commitment to advancing computational methods in hydrodynamics and environmental modeling, particularly addressing the challenges of bed topography deformation, fluid-structure interactions, and stress analysis in hydro-sediment systems.
  3. Interdisciplinary Research:
    • Dr. Al-Ghosoun’s research stands at the intersection of mechatronics, engineering, and environmental sciences, with a focus on adaptive control techniques and artificial intelligence. This interdisciplinary approach is essential in addressing complex real-world problems related to fluid dynamics and energy systems.
    • The integration of AI techniques (such as genetic algorithms) in energy consumption optimization and shallow water flow models highlights her innovative approach to solving large-scale engineering problems.
  4. Global Collaboration and Recognition:
    • With international experience as a Post-Doctoral Researcher at Durham University and several collaborative research efforts with Jordanian and UK-based academic institutions, Dr. Al-Ghosoun has developed a robust international network. Her involvement in global research platforms, such as ResearchGate, attests to her active engagement in the academic community and dissemination of her work.
  5. Teaching and Mentoring Experience:
    • Dr. Al-Ghosoun has demonstrated a strong commitment to education as an Assistant Professor at Philadelphia University, where she contributes to the development of young engineers in Mechatronics Engineering. Her role as a Teaching Assistant and Research Assistant at various institutions indicates her foundational experience in nurturing future engineers and scientists.
  6. Recognition of Research Excellence:
    • Dr. Al-Ghosoun’s papers, particularly her works on uncertainty quantification and modeling techniques for shallow water systems, have gained traction in the academic community. For instance, her work published in Environmental Modelling and Software (2021) has already accumulated 10 citations, signaling its importance in the field.

Areas for Improvement

  1. Broader Citation Impact:
    • While Dr. Al-Ghosoun’s work is highly specialized and impactful, the citation counts for some of her research papers remain low (e.g., her paper on stress analysis has 0 citations). Increasing visibility in wider journals and collaborating with researchers in complementary fields could enhance the reach and impact of her publications.
  2. Increased Public Engagement:
    • Engaging in public outreach or community-based projects that demonstrate the application of her research (e.g., how adaptive control methods improve water management or energy efficiency in real-world scenarios) could enhance the broader social impact of her work.
  3. Further Collaborative Interdisciplinary Projects:
    • Although her work spans several fields, further involvement in cross-disciplinary projects—especially those integrating sustainable engineering and climate resilience—could increase the relevance of her research to pressing global challenges, like climate change adaptation and sustainable resource management.

Education

Dr. Alia Radwan Al-Ghosoun earned her Doctor of Philosophy (DPhil) in Engineering from Durham University, UK in January 2021. Her doctoral research focused on understanding the effects of bathymetric movement on shallow water flows and their interaction with the seabed, leading to the development of adaptive control methods for improved accuracy in hydrodynamic simulations. Prior to this, she completed a Post-Doctorate at Durham University in 2022, where she explored the application of uncertainty quantification in complex engineering models. Dr. Al-Ghosoun holds a Master’s Degree in Mechanical Engineering from the University of Jordan, where she developed AI-based predictive models for fuel consumption in Jordan and optimized energy efficiency through genetic algorithms. She also earned her Bachelor’s degree in Mechatronics Engineering from the University of Jordan. Dr. Al-Ghosoun’s academic background equips her with interdisciplinary expertise in engineering and environmental science.

Experience

Dr. Alia Radwan Al-Ghosoun is currently an Assistant Professor at Philadelphia University in the Mechatronics Engineering Department since October 2022, where she teaches and conducts research in engineering systems and adaptive control techniques. Prior to this, she was a Post-Doctoral Researcher at Durham University, UK (2021-2022), focusing on uncertainty quantification in shallow water systems. Dr. Al-Ghosoun completed her DPhil at Durham University (2016-2021), where her research involved modeling shallow water flows and the interaction of bed topography. She has also held roles as a Research Assistant at the University of Jordan’s Water, Energy, and Environment Center (2012-2016) and the King Abdullah Design and Development Bureau (KADDB) (2012). Earlier in her career, she worked as a Teaching Assistant in both Mechatronics and Mechanical Engineering departments at the University of Jordan. Dr. Al-Ghosoun’s interdisciplinary experience blends academia with applied engineering solutions.

Awards and Honors

Dr. Alia Radwan Al-Ghosoun has been recognized for her research excellence and commitment to advancing knowledge in hydrodynamics and adaptive control systems. Her academic achievements are highlighted by her work at Durham University, where she earned a prestigious Doctoral Fellowship for her research on shallow water dynamics and bed interaction. She has also received recognition for her post-doctoral research contributions in uncertainty quantification and numerical simulations. Dr. Al-Ghosoun’s work has been presented at major academic conferences, and she has contributed to a variety of high-impact journal publications. In addition to her research accomplishments, she has been awarded teaching grants to support her role as an educator at Philadelphia University, where she mentors the next generation of Mechatronics engineers. Her consistent efforts to bridge the gap between theoretical research and practical engineering applications have earned her widespread recognition within her academic and professional communities.

Research Focus

Dr. Alia Radwan Al-Ghosoun specializes in hydrodynamic modeling, shallow water flows, and the application of adaptive control systems to improve the accuracy of complex environmental simulations. Her research interests focus on uncertainty quantification and the development of computational models for the numerical simulation of fluid dynamics, particularly in the context of stochastic bed topography and morphodynamics. She has worked extensively on shallow water waves, bathymetric effects, and water-bed interaction. One of her core research goals is to enhance the predictive accuracy of models used for environmental management and engineering systems by incorporating artificial intelligence techniques, such as genetic algorithms and surrogate models. Dr. Al-Ghosoun is passionate about integrating AI-based solutions into environmental and energy systems to address challenges like resource optimization, pollution reduction, and sustainable energy. Her work in hydro-sediment-morphodynamics provides valuable insights into climate change adaptation and water resource management.

Publication Top Notes

  1. Uncertainty quantification for stochastic morphodynamics 🌊🧑‍🔬, AIP Conference Proceedings, 2024.
  2. A Novel Computational Approach for Wind-Driven Flows over Deformable Topography 💨🌍, Lecture Notes in Computer Science, 2024.
  3. A Nonintrusive Reduced-Order Model for Uncertainty Quantification in Numerical Solution of One-Dimensional Free-Surface Water Flows Over Stochastic Beds 📊💧, International Journal of Computational Methods, 2022.
  4. Efficient Computational Algorithm for Stress Analysis in Hydro-Sediment-Morphodynamic Models 💻⚙️, Lecture Notes in Computer Science, 2022.
  5. A surrogate model for efficient quantification of uncertainties in multilayer shallow water flows 🌊🔬, Environmental Modelling and Software, 2021.
  6. A computational model for simulation of shallow water waves by elastic deformations in the topography 🌊⚡, Communications in Computational Physics, 2021.
  7. Uncertainty Quantification of Bathymetric Effects in a Two-Layer Shallow Water Model: Case of the Gibraltar Strait 🏝️🌊, Springer Water, 2020.
  8. A hybrid finite volume/finite element method for shallow water waves by static deformation on seabeds 🌊🧮, Engineering Computations, 2020.
  9. A new numerical treatment of moving wet/dry fronts in dam-break flows 💧🚨, Journal of Applied Mathematics and Computing, 2019.

Conclusion

Dr. Alia Radwan Al-Ghosoun is an exceptional candidate for the Best Researcher Award. Her contributions to the fields of hydrodynamics, uncertainty quantification, and adaptive control systems are not only advancing the understanding of complex environmental processes but are also pioneering new computational techniques that can improve the accuracy and efficiency of engineering systems. Her ability to merge artificial intelligence with environmental modeling positions her as a leader in the field. Her ongoing efforts in teaching, mentoring, and global academic collaborations further highlight her potential to shape the future of engineering and environmental sciences. With a few strategic steps to broaden her citation impact and public visibility, Dr. Al-Ghosoun could solidify her place as a thought leader in her field.

Sanyogita Manu | Engineering and Technology | Best Researcher Award

Ms. Sanyogita Manu | Engineering and Technology | Best Researcher Award

PhD Candidate, The University of British Columbia, Canada

Publication Profile

Google scholar

Strengths for the Award

  1. Innovative Research Focus: Sanyogita’s work addresses a significant issue—indoor environmental quality during a time when many transitioned to remote work due to the pandemic. Her systematic study has the potential to inform guidelines and policies related to home office setups, highlighting its relevance in current public health discussions.
  2. Methodological Rigor: The research employs a robust methodology, utilizing continuous monitoring of various IEQ parameters alongside subjective assessments from participants. This comprehensive approach enhances the reliability of her findings.
  3. Professional Affiliations and Contributions: Sanyogita is actively engaged in professional organizations related to her field, serving on committees and reviewing journals. Her involvement in international conferences signifies her commitment to advancing research in IEQ and energy-efficient design.
  4. Publication Record: With multiple peer-reviewed publications and conference proceedings, Sanyogita demonstrates a solid track record in disseminating her research findings, contributing to the academic community’s understanding of indoor environments.
  5. Awards and Recognition: Her prior achievements and recognitions, including scholarships and awards, underscore her dedication and excellence in research.

Areas for Improvement

  1. Broader Impact Assessment: While her research is focused on WFH settings, there may be an opportunity to expand her study to include diverse populations and different geographical locations to enhance the generalizability of her findings.
  2. Interdisciplinary Collaboration: Collaborating with professionals from related fields such as psychology, sociology, or occupational health could enrich her research and offer a more holistic understanding of the WFH experience.
  3. Public Engagement: Engaging in public outreach or workshops to share her findings with broader audiences, including policymakers and the general public, could enhance the impact of her work and foster practical applications of her research.

Education

Sanyogita holds a Master’s degree in Interior Architecture and Design, specializing in Energy and Sustainability from CEPT University, India, where her dissertation focused on optimizing window performance in commercial buildings. She also earned her Bachelor’s degree in Interior Design from the same institution, with a dissertation exploring the thermal effects of furniture in interior environments. 🎓

Experience

With extensive experience in academia and research, Sanyogita has contributed to various projects assessing indoor environmental conditions and energy efficiency in buildings. She has served on several scientific committees and has been actively involved in peer review for reputable journals, reflecting her expertise in the field. 🏢

Research Focus

Her research primarily focuses on indoor environmental quality (IEQ) and its impact on occupant well-being and productivity, particularly in work-from-home settings. Sanyogita employs a systematic approach to evaluate both perceived and observed IEQ, utilizing a variety of environmental monitoring tools. 🔍

Awards and Honours

Sanyogita is a member of multiple prestigious organizations, including the International Society of Indoor Air Quality and Climate (ISIAQ) and the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). She has been recognized for her contributions to building performance simulation and energy conservation, reflecting her commitment to sustainable practices. 🏆

Publication Top Notes

Manu, S., & Rysanek, A. (under review). A novel dataset of indoor environmental conditions in work-from-home settings. Building and Environment.

Manu, S., & Rysanek, A. (2024). A Co-Location Study of 87 Low-Cost Environmental Monitors: Assessing Outliers, Variability, and Uncertainty. Buildings, 14(9), Article 9. Link

Manu, S., et al. (2024). A state-of-the-art, systematic review of indoor environmental quality studies in work-from-home settings. Building and Environment, 111652. Link

Doctor-Pingel, M., et al. (2019). A study of indoor thermal parameters for naturally ventilated occupied buildings in the warm-humid climate of southern India. Building and Environment, 151, 1-14. Link

Manu, S., et al. (2019). Performance evaluation of climate responsive buildings in India – Case studies from cooling dominated climate zones. Building and Environment, 148, 136-156. Link

Gupta, R., et al. (2019). Customized performance evaluation approach for Indian green buildings. Building Research & Information, 47(1), 56–74. Link

Conclusion

Sanyogita Manu’s research on indoor environmental quality in work-from-home settings is both timely and significant. Her methodological rigor, publication record, and active participation in professional communities demonstrate her dedication to advancing knowledge in her field. While there are areas for improvement, her strengths strongly position her as a worthy candidate for the Best Researcher Award. Her work has the potential to influence policy and improve well-being in residential work environments, making her contributions invaluable in today’s context.

Markus Miller | Electrical Engineering Award | Best Researcher Award

Mr Markus Miller | Electrical Engineering Award | Best Researcher Award

Mr Markus Miller, Institute of Automation Technology, University of Bremen ,Germany

👨‍🎓 Markus Miller is an accomplished electrical engineer and Ph.D. researcher at the University of Bremen’s Institute of Automation Technology under Prof. Dr. Johanna Myrzik. His work focuses on integrating renewable energy into power grids, developing methodologies for hybrid AC-DC systems. Markus excels in probability and stochastic processes, aiding power grid planning as a tutor for “Stochastic Systems.” Noteworthy achievements include winning the 2016 Bremen Big Data Challenge. His research emphasizes cost-effective, flexible, and resilient grid expansion using AI and optimization techniques. Currently, he explores Smart Power Cells (SPCs) under the DFG SPP 1984 program, addressing challenges in decentralized power systems and Distributed Energy Resources (DERs).

Publication Profile

Orcid

Education

🎓 Markus Miller pursued his academic journey at the University of Bremen, where he earned a Bachelor of Science in Electrical Engineering and Information Technology from 2015 to 2019. Building upon this foundation, he continued to excel, completing his Master of Science in the same field from 2019 to 2021. His education equipped him with profound knowledge in electrical engineering, preparing him for his current role as a Ph.D. researcher specializing in renewable energy integration at the Institute of Automation Technology. Markus’s academic path underscores his dedication to advancing sustainable energy solutions and enhancing power grid efficiency through innovative methodologies and advanced technologies.

Experience

🔋 Markus Miller is currently immersed in pioneering research at the University of Bremen, focusing on integrating renewable energy into power grids. His work centers on developing comprehensive methodologies for planning interconnected hybrid and multimodal AC-DC power systems. As part of the DFG SPP 1984 program’s second phase, Markus explores the pivotal role of Smart Power Cells (SPCs) in decentralized power networks. Leveraging AI and mathematical programming solvers, he optimizes SPC operations and planning, tackling challenges such as Distributed Energy Resources (DERs), power generation uncertainties, and storage system operations. Additionally, Markus imparts his expertise as a tutor for “Stochastic Systems,” enhancing students’ grasp and application of probability and stochastic processes in power grid planning.

 

Research Focus

Markus Miller’s current research focuses on optimizing the allocation of renewable energy systems within weak distribution networks. This work, highlighted in the journal article “Optimal allocation of renewable energy systems in a weak distribution network” published in Electric Power Systems Research, aims to enhance the integration of renewable energy sources into power grids. Collaborating with José Luis Paternina Durán, Sergio F. Contreras, Camilo A. Cortes, and Johanna M.A. Myrzik, Markus addresses critical challenges such as grid stability and efficiency. By employing advanced methodologies and leveraging interdisciplinary insights, his research contributes to sustainable energy solutions that are crucial for meeting future energy demands while minimizing environmental impact.

Publication Top Note

Optimal allocation of renewable energy systems in a weak distribution network