Gulseren dagdelenler | Engineering Geology | Women Researcher Award

Assoc. Prof. Dr. Gulseren dagdelenler | Engineering Geology | Women Researcher Award

Gulseren dagdelenler, Hacettepe University, Turkey

Gulseren Dagdelenler is a distinguished researcher and academic at Hacettepe University, specializing in geological engineering. Her research focuses on engineering geology, landslides, GIS, rock mechanics, and soft computing methods. With extensive expertise, she has contributed significantly to improving rock excavation techniques and landslide susceptibility mapping. Her academic journey spans from her undergraduate studies at Hacettepe University to her Ph.D. in geological engineering. With numerous publications and active participation in scientific research, she is a leading figure in her field. Gulseren’s work has earned recognition both nationally and internationally, making her a prominent researcher in the geotechnical engineering community. Beyond academia, she is passionate about contributing to safer, more sustainable construction practices and environmental protection, particularly in landslide-prone regions.

Profile

Education

Gulseren Dagdelenler completed her education at Hacettepe University, where she earned her Bachelor’s degree in Geological Engineering (1999–2003). She then pursued a Master’s degree in the same field at Hacettepe University’s Graduate School of Natural and Applied Sciences (2003–2006), focusing on rock material classification. Building on her academic foundation, she completed her Ph.D. at the same institution from 2007 to 2013, concentrating on landslide susceptibility mapping and evaluation techniques. Throughout her academic career, she has remained dedicated to advancing the field of geological engineering, particularly in areas related to rock mechanics, excavation, and environmental geology. Her research has not only contributed to geological theory but also has practical applications in civil engineering, disaster management, and resource extraction. Gulseren’s strong academic background has laid the foundation for her successful career as a researcher and educator.

Experience

Gulseren Dagdelenler has had an impressive academic career at Hacettepe University. Starting as a Research Assistant in 2007, she has advanced to the position of Ph.D. Research Assistant since 2012, where she continues to contribute to the university’s research output. Throughout her career, Gulseren has worked extensively on topics related to engineering geology, such as landslide susceptibility, rock excavation methods, and the application of geographic information systems (GIS) and remote sensing technologies. Her experience includes both theoretical research and practical studies that have led to the development of tools and methods for predicting rock behavior in excavation processes. Gulseren’s ability to combine geological engineering with modern technology has made her a leading figure in her field. She has also collaborated with various professionals, contributing to the geotechnical engineering community, and published widely in respected academic journals, making her an integral part of the university’s research environment.

Awards and Honors

Gulseren Dagdelenler has received several prestigious awards and honors throughout her academic career. In 2020, her paper “A Flexible System for Selection of Rock Mass Excavation Method,” co-authored with Harun Sonmez and Charalampos Saroglou, won the award from the Turkish National Committee on Roads (YTMK), recognizing its contribution to rock excavation engineering. Her research has been widely cited, with numerous publications in respected journals such as Journal of Rock Mechanics and Geotechnical Engineering, Arabian Journal of Geosciences, and Bulletin of Engineering Geology and the Environment. Her contributions to rock mechanics, geotechnical engineering, and landslide research have garnered recognition within the scientific community. Gulseren’s work is not only well-regarded for its academic rigor but also for its practical implications in environmental safety and engineering practices. These accolades reflect her continued excellence and leadership in the field of geological engineering and geotechnical research.

Research Focus

Gulseren Dagdelenler’s research focuses on several key areas within geological engineering, including engineering geology, landslides, and rock mechanics. One of her primary research interests is landslide susceptibility mapping, particularly in areas prone to geological hazards, such as the Gallipoli Peninsula. She combines remote sensing, GIS, and soft computing methods to enhance the accuracy and efficiency of landslide prediction. Her work also extends to the study of rock excavation techniques, where she has developed innovative methods for selecting excavation methods based on rock mass properties. Additionally, she explores weathering in rocks, the behavior of rock masses under stress, and liquefaction phenomena. Gulseren’s interdisciplinary approach integrates geotechnical engineering with advanced technologies like artificial intelligence to address complex geological problems. Her research not only contributes to scientific knowledge but also has practical applications in civil engineering, environmental management, and disaster mitigation.

Publication Top Notes

  1. “A Flexible System for Selection of Rock Mass Excavation Method” 🪓🪨
  2. “A Novel Approach to Structural Anisotropy Classification for Jointed Rock Masses Using Theoretical Rock Quality Designation Formulation Adjusted to Joint Spacing” 📏🪨
  3. “Comparison of the Efficiency Evaluations of Selected Excavatability Classifications for Rock Masses” ⛏️🪨
  4. “An Empirical Method for Predicting the Strength of Bim Materials Using Modifications of Lindquist’s and Leps’ Approaches” 🧱🔬
  5. “A Flexible System for Selection of Rock Mass Excavation Method” 🪓🪨
  6. “Comparison of the Landslide Susceptibility Maps Using Two Different Sampling Techniques with the Frequency Ratio (Fr) Method” 🌍🌧️
  7. “Landslide Susceptibility Mapping at Ovacık-Karabük (Turkey) Using Different Artificial Neural Network Models: Comparison of Training Algorithms” 🧠🌍
  8. “Prediction of Mono-Wire Cutting Machine Performance Parameters Using Artificial Neural Network and Regression Models” 🤖🔩
  9. “Application of Chebyshev Theorem to Data Preparation in Landslide Susceptibility Mapping Studies: An Example from Yenice (Karabük, Turkey) Region” 🧮📍
  10. “Predicting Uniaxial Compressive Strength and Deformation Modulus of Volcanic Bimrock Considering Engineering Dimension” 🏔️🧱

Joon Kyu Lee | Geotechnical Engineering | Best Researcher Award

Dr Joon Kyu Lee | Geotechnical Engineering | Best Researcher Award

Professor, University of Seoul, South Korea

Dr. Joon Kyu Lee is a Professor in the Department of Civil Engineering at the University of Seoul and the Director of the Geohazard Prevention Research Center. He has extensive expertise in geotechnical engineering, focusing on structural stability, foundation systems, and environmental geotechnics. Dr. Lee’s academic journey includes a PhD in Civil & Environmental Engineering from the University of Western Ontario, Canada. He has held various academic roles, including Assistant and Associate Professor at the University of Seoul. In addition, he has been a Visiting Scholar at the University of North Carolina, Charlotte. Dr. Lee is an active member of various professional organizations and serves as an editor for multiple academic journals. His research contributions have made a significant impact in both academia and industry, particularly in areas related to offshore structures, soil mechanics, and geohazard mitigation.

Profile

Scopus

Education

Dr. Joon Kyu Lee holds a PhD in Civil & Environmental Engineering (Geotechnical) from the University of Western Ontario, Canada (2012). His academic journey began with a BS in Civil & Urban Engineering (2005) and an MS in Civil Engineering (Geotechnical) (2007), both from Yonsei University, Korea. The doctoral research focused on advanced geotechnical engineering techniques and their practical applications. Dr. Lee’s educational background laid the foundation for his subsequent academic and research success, equipping him with expertise in soil mechanics, foundation systems, and environmental geotechnics. This diverse education has supported his broad research interests and innovative approaches in the civil engineering domain. His time at the University of Western Ontario, Canada, allowed him to work with leading experts in the field and shaped his ongoing commitment to advancing geotechnical engineering through both theoretical and practical research.

Experience

Dr. Joon Kyu Lee has accumulated a wealth of experience in academia and research, holding various prestigious roles at the University of Seoul. Since 2024, he has been a Professor in the Department of Civil Engineering, also serving as the Director of the Geohazard Prevention Research Center. Prior to his current position, Dr. Lee was an Associate Professor (2020-2022) and Assistant Professor (2016-2019) at the University of Seoul. His early career includes a Research Professor role at Yonsei University in 2015 and a Postdoctoral Research Associate position (2013-2014). Dr. Lee has also contributed to international academic communities as a Visiting Scholar in Civil and Environmental Engineering at the University of North Carolina, Charlotte (2022). His leadership extends beyond teaching, as he has been the Department Chair at the University of Seoul and served on various academic committees and review panels. Dr. Lee is known for his impactful research in geotechnical engineering.

Awards and Honors

Dr. Joon Kyu Lee has received numerous prestigious awards recognizing his outstanding contributions to academia and the field of civil engineering. In 2024, he was honored with the Minister’s Citation by the Ministry of Land, Infrastructure, and Transport of the Republic of Korea. Additionally, Dr. Lee received the Governor’s Citation from Gyeonggi Province in 2021 and the Presidential Award from the Korean Geotechnical Society in 2018. His dedication to teaching was also recognized with the Outstanding Teaching Award from the University of Seoul in 2017. Dr. Lee’s research excellence has earned him the Best Paper Presentation Award from the Korean Geotechnical Society in 2013. His early academic achievements were supported by the Brain Korea 21 Scholarship, which he received in 2006. These awards highlight Dr. Lee’s leadership in geotechnical engineering and his continued efforts to advance both academic research and education in the field.

Research Focus

Dr. Joon Kyu Lee’s research focuses on geotechnical engineering, with a special emphasis on soil mechanics, foundation systems, and structural stability in civil engineering. His work explores advanced topics such as the bearing capacity of foundations for offshore structures, the stability of footings on soils with voids, and the performance of tapered piles in heterogeneous soils. Dr. Lee’s contributions to eco-friendly engineering include the study of cemented paste backfills for mine stabilization. He also investigates the probabilistic resistance of subsea pipelines, contributing to safer marine engineering practices. His recent research on surface ground vibrations induced by tunnel blasting showcases his ability to integrate practical considerations with advanced theoretical modeling. Dr. Lee is dedicated to geohazard mitigation and the sustainable design of infrastructure. His work addresses both fundamental geotechnical problems and industry-relevant challenges, making him a key figure in advancing geotechnical and civil engineering practices.

Publication Top Notes

  1. Probabilistic Undrained Resistance of Subsea Buried Pipelines Against Upheaval Buckling 🌊🚢
  2. Evaluation of Surface Ground Vibrations Induced by Tunnel Blasts During Railway Construction: A Case Study 🚇🌍
  3. In-Plane Free Vibration of Laterally Symmetric Functionally Graded Material Arches 📐🏗️
  4. Stability Analysis of Axially Functionally Graded Heavy Column 🏛️💡
  5. Generalized Flexural Rigidity of Laterally Functionally Graded Material Cross Sections and Its Application to Cantilever Beam Elasticas 🛠️🔧
  6. Transverse Free Vibration of Pre-stressed Heavy Columns Laminated from Two-Hybrid Materials with Circular Cross-Section 🔄🏗️
  7. Probabilistic Ultimate Lateral Capacity of Two-Pile Groups in Spatially Random Clay 🌍⚙️
  8. Approximate Settlement Influence Factors for Bucket Foundations 🏝️⚓
  9. Free Vibration of Ogival Circular Arch ⏺️🔊
  10. Influence of Consolidation on Undrained Capacity of Two Interfering Footings on Heterogeneous Clays 🌱🛠️

Nathanaël Savalle | Geotechnics | Young Scientist Award

Assist. Prof. Dr. Nathanaël Savalle | Geotechnics | Young Scientist Award 

Lecturer, Clermont Auvergne University, Clermont Auvergne INP, CNRS, Pascal Institute, France

Dr. Nathanaël Savalle, born on December 16, 1993, is a French post-doctoral researcher at the Universidade do Minho, Portugal. He specializes in civil engineering, focusing on the seismic behavior of masonry and dry stone structures. With fluency in English, French, German, and Portuguese, Nathanaël has contributed to the development of experimental and numerical methodologies for assessing the performance of historical structures under seismic loads. He works under the supervision of Pr. Paulo B. Lourenço at the Institute for Sustainability and Innovation in Structural Engineering (ISISE). He has collaborated extensively on various high-impact projects related to masonry structures, including shaking table and dynamic tests. His dedication to structural mechanics and his multi-disciplinary expertise make him a valuable contributor to his field. Nathanaël’s research interests also include geotechnics, discrete element modeling, and limit analysis.

Profile

Orcid

Strengths for the Award

  1. Expertise in Innovative Research Areas: Nathanaël Savalle has demonstrated expertise in niche areas of civil engineering, particularly in the seismic behavior of masonry structures, dry stone retaining walls, and geotechnics. His research on dry-stone structures and their dynamic and seismic responses stands out, which is highly relevant for contemporary challenges in structural engineering, especially in the preservation of historical buildings and resilience against earthquakes.
  2. Significant Research Contributions: He has contributed to numerous peer-reviewed journal articles, including publications in high-impact journals like Engineering Structures and Construction and Building Materials. His work covers both experimental and numerical aspects of structural behavior, including discrete element modeling (DEM), shaking table tests, and limit analysis. This breadth of expertise, paired with practical testing (e.g., shaking table tests), is an asset to advancing the understanding of masonry and geotechnics under seismic loads.
  3. Multidisciplinary Approach: His research utilizes a combination of advanced modeling techniques (such as DEM and Finite Element Method) and practical experimental validation (e.g., shaking table and rocking tests). This multidisciplinary approach strengthens the reliability and applicability of his findings, which are valuable not only in structural engineering but also in fields like geotechnics and seismic risk assessment.
  4. International and Collaborative Research: Nathanaël’s involvement in research at the University of Minho, Portugal, and collaborations across several institutions, including the University of Lyon, École Centrale de Lyon, and others, shows his ability to work in international teams. His participation in European research projects (e.g., ERC-funded projects) highlights his contribution to the scientific community at a global level.
  5. Teaching and Mentoring: He has shown strong teaching and mentoring abilities, guiding students at the undergraduate, master’s, and Ph.D. levels. This is an important indicator of his commitment to knowledge transfer and fostering the next generation of researchers and engineers.
  6. Awards and Recognition: Nathanaël has received multiple awards, such as the 1st place at the IMC10 student competition and the jury’s congratulations for his engineering degree, which further solidify his standing as an outstanding young researcher in his field.

Areas for Improvement

  1. Wider Research Dissemination: While Nathanaël’s work has been published in high-impact journals, there may be potential to increase the dissemination of his research to broader audiences outside academia, such as in professional engineering networks, policy-making circles, and industry collaborations. Engaging more with industry applications and challenges could help bridge the gap between academic research and real-world implementation.
  2. Broader Interdisciplinary Collaboration: Though Nathanaël’s work is already multidisciplinary, expanding his research collaborations to include experts in related fields, such as urban planning, heritage preservation, or computational modeling in architecture, could enhance the applicability of his work in other domains, leading to more innovative solutions.
  3. Public Outreach and Communication: Given the technical nature of his research, there may be an opportunity for Nathanaël to increase his involvement in public outreach or public lectures to make complex engineering concepts more accessible to non-expert audiences. This could also help in highlighting the importance of preserving historical structures and enhancing building resilience against earthquakes, making his research more impactful on a societal level.

Education

Nathanaël Savalle completed his Ph.D. in Civil Engineering at the University of Lyon (2016-2019), where he focused on the seismic behavior of slope dry stone retaining walls. He was supervised by Professors Éric Vincens and Stéphane Hans, receiving the prestigious MESR grant for his research. He also holds a Research Master in Civil Engineering (MEGA) from the University of Lyon, with a grade of 15.5/20, where he studied topics such as viscoelasticity and structural dynamics. In addition, Nathanaël earned an Engineering degree from École Centrale de Lyon in 2016, ranking 1st in his class (40 students) with a specialization in civil engineering. His undergraduate studies covered a broad range of topics, including reinforced concrete, soils mechanics, structural dynamics, acoustics, and renewable energies. Nathanaël’s strong academic foundation in both practical and theoretical aspects of civil engineering underpins his current research expertise.

Experience

Dr. Nathanaël Savalle has extensive experience in the field of civil engineering, particularly in the seismic behavior of masonry and dry stone structures. Since 2020, he has been a post-doctoral researcher at the University of Minho, Portugal, working on the ERC-funded Stand4Heritage project. His research focuses on understanding the seismic behavior of historical buildings, specifically masonry arches, through laboratory shaking table tests, dynamic simulations, and material characterization. Nathanaël’s Ph.D. research (2016-2019) at École Centrale de Lyon addressed the seismic response of dry stone retaining walls, where he applied discrete element methods (DEM) and conducted large-scale experimental shaking table tests. He has also worked on various research projects, including those on soil mechanics, hydraulic properties, and structural behavior. His experience includes supervising doctoral students, contributing to international collaborations, and publishing numerous high-impact articles in peer-reviewed journals.

Awards and Honors

Dr. Nathanaël Savalle has received multiple honors and awards in recognition of his outstanding contributions to civil engineering research. In 2018, he was awarded the first prize at the IMC10 student competition in Milan for his innovative design of a masonry shear wall with enhanced resistance. Nathanaël also received the prestigious Jury’s Congratulations upon completing his Engineer’s degree from École Centrale de Lyon in 2016, where he ranked 1st out of 40 students. His research excellence was further acknowledged when he was awarded the MESR Ph.D. grant from the ED MEGA doctoral school for his doctoral studies on dry-stone structure behavior. Nathanaël’s achievements demonstrate his dedication to advancing the field of structural engineering, particularly in the assessment of historical and masonry structures. His research contributions continue to have a lasting impact on the academic community and industry practices.

Research Focus

Dr. Nathanaël Savalle’s primary research focus lies in understanding and improving the seismic behavior of masonry and dry stone structures, which are critical components of historical and cultural heritage. His work includes conducting both experimental and numerical studies on the dynamic and static behavior of dry-joint masonry walls, retaining systems, and masonry arches under seismic loading. He employs a combination of advanced testing techniques, such as shaking table tests, dynamic simulations, and discrete element methods (DEM), to assess the performance of these structures during earthquakes. Nathanaël’s research aims to provide accurate modeling and assessment tools for seismic design, offering guidelines for the protection of historical buildings. He is also engaged in the development of limit analysis methods and homogenization techniques to improve the efficiency and precision of structural assessments. His interdisciplinary approach spans structural dynamics, geotechnics, and material characterization, making his research highly relevant for modern engineering challenges in heritage conservation.

Publication Top Notes

  1. “Experimental characterisation of dry-joint masonry structures: Interface stiffness and interface damping” 🏛️ by Georgios Vlachakis, Carla Colombo, Anastasios I. Giouvanidis, Nathanaël Savalle, Paulo B. Lourenço 🏗️ Construction and Building Materials (2023)
  2. “Static and seismic design of Dry Stone Retaining Walls (DSRWs) following Eurocode standards” 🧱 by Nathanaël Savalle, Christine Monchal, Eric Vincens, Sten Forcioli, Paulo B. Lourenço 🏛️ Engineering Structures (2023)
  3. “A concurrent micro/macro FE-model optimized with a limit analysis tool for the assessment of dry-joint masonry structures” 🏛️ by Nathanaël Savalle 🧱 International Journal for Multiscale Computational Engineering (2022)
  4. “Dynamic behaviour of drystone retaining walls: shaking table scaled-down tests” 🏛️ by N. Savalle, J. Blanc-Gonnet, E. Vincens, S. Hans ⚒️ European Journal of Environmental and Civil Engineering (2022)
  5. “Dynamic Numerical Simulations of Dry-Stone Retaining Walls: Identification of the Seismic Behaviour Factor” 🧱 by Nathanaël Savalle, Eric Vincens, Stéphane Hans, Paulo B. Lourenço 🌍 Geosciences (2022)
  6. “Joint Stiffness Influence on the First-Order Seismic Capacity of Dry-Joint Masonry Structures: Numerical DEM Investigations” 🏛️ by Nathanaël Savalle, Paulo B. Lourenço, Gabriele Milani 🔧 Applied Sciences (2022)
  7. “Experimental and numerical studies on scaled-down dry-joint retaining walls: Pseudo-static approach to quantify the resistance of a dry-joint brick retaining wall” 🧱 by Nathanaël Savalle, Éric Vincens, Stéphane Hans 🔬 Bulletin of Earthquake Engineering (2020)
  8. “Pseudo-static scaled-down experiments on dry stone retaining walls: Preliminary implications for the seismic design” 🧱 by Savalle, N., Vincens, E., Hans, S. ⚒️ Engineering Structures (2018)

Conclusion

Nathanaël Savalle is highly deserving of the Research for Young Scientist Award. His solid foundation in civil engineering, particularly in the seismic analysis of dry-stone structures, and his ability to combine experimental techniques with advanced computational models, make him a valuable contributor to the field. His research has significant potential for real-world applications in structural resilience and historical preservation. With continued collaboration, broader dissemination, and enhanced outreach efforts, Nathanaël is well-positioned to make even greater contributions to his field and society as a whole.