Providence Habumuremyi | Civil Engineering | Best Researcher Award

Dr. Providence Habumuremyi | Civil Engineering | Best Researcher Award

Postdoctoral Fellow, Fuzhou University, China.

Dr. Providence Habumuremyi, born on January 1, 1988, in Rwanda, is a distinguished civil engineer specializing in tunnel stability and geotechnical engineering. Currently a postdoctoral fellow at Fuzhou University, China, he earned his Doctor of Engineering from Beijing Jiaotong University, focusing on three-dimensional analytical methods for tunnel face stability in undrained clay grounds. His academic journey includes a Master’s degree in Civil Engineering from the same university and a Bachelor’s degree from the University of Rwanda. Dr. Habumuremyi’s professional experience spans roles such as Civil Engineer at Beijing Jinghangan Airport Engineering Co., Ltd., contributing to international airport projects in the Maldives and Zambia. His multilingual abilities and cross-cultural experiences enhance his collaborative research endeavors. Recognized for his analytical skills and innovative approaches, Dr. Habumuremyi continues to impact the field through research, publications, and contributions to major engineering projects.

Profile

Orcid

🎓 Education

  • Doctor of Engineering in Civil Engineering
    Beijing Jiaotong University, China (09/2019 – 06/2024)
    Dissertation: Three-Dimensional Analytical Continuous Upper Bound Limit Analyses for Face Stability of Shallow Shield Tunneling in Undrained Clay Ground
    Supervisor: Prof. Yan-Yong Xiang

  • Master of Engineering in Civil Engineering
    Beijing Jiaotong University, China (09/2015 – 06/2017)
    Thesis: Friction Pendulum Systems for Seismic Isolation of Structures in Near-Fault Regions
    Supervisor: Prof. Lin LiuResearcher Discovery+1AGRIS+1

  • Bachelor of Science in Civil Engineering
    University of Rwanda (01/2011 – 08/2014)
    Supervisor: Prof. Park Ildong

🏗️ Experience

  • Postdoctoral Researcher
    Fuzhou University, China (11/2024 – Present)
    Research Focus: Tunnel stability, ground and structural dynamics, geotechnical engineering.

  • Inspector
    Beijing Jianyetong Engineering Testing Technology Co., Ltd. (07/2024 – 11/2024)
    Responsibilities: Preparation of construction drawings, on-site surveying, attending technical meetings.

  • Civil Engineer
    Beijing Jinghangan Airport Engineering Co., Ltd. (07/2017 – 09/2019)
    Projects: Expansion of Maldives Velana International Airport; Construction of Ndola Simon Mwansa Kapwepwe International Airport, Zambia.
    Responsibilities: Preparation of construction drawings, site supervision, technical meetings, translation of technical documents (Chinese to English).

  • Director of Studies
    Collegio Santo Antonio Maria Zaccaria (01/2015 – 09/2015)
    Responsibilities: Supervision of teachers, curriculum implementation follow-up, teaching Mathematics, Physics, Technical Drawing, Scaffolding.

🔬 Research Focus 

Dr. Habumuremyi’s research centers on the stability analysis of tunnel faces, particularly in undrained clay conditions. He employs analytical and computational methods, including three-dimensional upper bound limit analyses, to assess and enhance the safety of shallow shield tunneling operations. His work extends to geotechnical engineering, focusing on soil-structure interaction, and the dynamics of structures under seismic loading. By integrating tools like MATLAB, SAP2000, ABAQUS, and OPTUM G2 & G3, he develops models that predict structural responses to various geotechnical challenges. His interdisciplinary approach aims to improve construction practices and inform the design of resilient infrastructure.

📚 Publication Top Notes

1. A 3-D Analytical Continuous Upper Bound Limit Analysis for Face Stability of Shallow Shield Tunneling in Undrained Clays

Journal: Computers and Geotechnics, December 2023
DOI: 10.1016/j.compgeo.2023.105779
Authors: Providence Habumuremyi, Yanyong Xiang

Summary:
This paper introduces a three-dimensional (3D) analytical upper bound limit method to evaluate face stability in shallow shield tunneling through undrained clay. Unlike previous two-dimensional models, the authors developed a 3D continuous velocity field based on a logarithmic spiral failure mechanism, offering more accurate predictions. The method considers various tunnel depths, diameters, and face pressures.

Key Contributions:

  • Developed a new continuous 3D velocity field using upper bound limit analysis.

  • Applied to shield tunneling in undrained clay (e.g., soft cohesive soil in urban areas).

  • Validated against numerical simulations (ABAQUS), showing good agreement.

  • Provided design charts for practicing engineers.

Relevance:
This model improves the safety and efficiency of tunnel construction in soft ground by offering realistic estimations of the support pressure required to prevent face collapse.

2. Determining Trigger Factors of Soil Mass Failure in a Hollow: A Study Based in the Sichuan Province, China

Journal: CATENA, September 2022
DOI: 10.1016/j.catena.2022.106368
Authors: Jules Maurice Habumugisha, Ningsheng Chen, Mahfuzur Rahman, Providence Habumuremyi, Etienne Tuyishimire, et al.

Summary:
This study investigates the main triggering factors of soil mass failure (landslides) in a specific hollow area of Sichuan Province, China. It uses field data, geostatistics, and geotechnical analysis to assess slope failure causes. Key parameters include slope angle, rainfall, vegetation cover, and soil composition.

Key Contributions:

  • Combined field sampling, laboratory testing, and remote sensing.

  • Identified critical depth and shear strength thresholds for failure.

  • Proposed mitigation techniques, including improved land management and vegetative cover.

Relevance:
Essential for improving slope stability prediction and disaster risk reduction in landslide-prone mountainous regions.

3. Friction Pendulum Systems for Seismic Isolation of Structures in Near-Fault Regions

Type: Master’s Thesis
Date: May 20, 2017
DOI: 10.13140/RG.2.2.19943.15527
Author: Providence Habumuremyi

Summary:
This thesis evaluates the performance of Friction Pendulum Systems (FPS) for seismic isolation in buildings located in near-fault zones. Near-fault ground motions can be intense and impulsive, posing challenges to conventional structural designs. The study uses numerical simulations in SAP2000 to demonstrate how FPS can effectively decouple structures from strong ground motions.

Key Contributions:

  • Designed FPS models for medium-rise buildings.

  • Compared base-isolated structures with fixed-base ones under near-fault motion.

  • Showed significant reduction in base shear and inter-story drift with FPS.

Relevance:
Supports the use of FPS isolation technology in earthquake engineering, particularly for civil infrastructure near seismic faults.

4. Mitigation Measures for Wind Erosion and Sand Deposition in Desert Railways: A Geospatial Analysis of Sand Accumulation Risk

  • Journal: Sustainability, April 29, 2025

  • DOI: 10.3390/su17094016

  • Authors: Mahamat Nour Issa Abdallah, Tan Qulin, Mohamed Ramadan, Providence Habumuremyi

Summary:

This study presents a comprehensive geospatial analysis aimed at identifying and mitigating the risks associated with wind erosion and sand deposition along desert railway corridors. Utilizing advanced GIS tools and remote sensing data, the research identifies high-risk zones where sand accumulation poses significant threats to railway infrastructure. The authors evaluate various mitigation strategies, including the implementation of sand fences, vegetation barriers, and optimized track alignments, to reduce the impact of aeolian processes on railway operations.

Key Contributions:

  • Development of a geospatial risk assessment model for sand accumulation along railway lines.

  • Identification of critical zones susceptible to wind-induced sand deposition.

  • Evaluation of mitigation measures and their effectiveness in different environmental contexts.

  • Recommendations for integrating geospatial analysis into railway planning and maintenance strategies.

Relevance:

The findings offer valuable insights for railway engineers and planners working in arid regions, providing tools and strategies to enhance the resilience of railway infrastructure against wind erosion and sand deposition.

5. Atom Search Optimization: A Systematic Review of Current Variants and Applications

  • Journal: Knowledge and Information Systems, April 12, 2025

  • DOI: 10.1007/s10115-025-02389-3

  • Authors: Sylvère Mugemanyi, Zhaoyang Qu, François Xavier Rugema, Yunchang Dong, Lei Wang, Félicité Pacifique Mutuyimana, Emmanuel Mutabazi, Providence Habumuremyi, Rita Clémence Mutabazi, et al.

Summary:

This comprehensive review delves into the Atom Search Optimization (ASO) algorithm, a nature-inspired metaheuristic optimization technique. The paper systematically categorizes existing variants of ASO, analyzing their structural modifications, performance enhancements, and application domains. It also highlights the algorithm’s adaptability in solving complex optimization problems across various fields, including engineering design, machine learning, and operational research.

Key Contributions:

  • Classification and analysis of existing ASO variants and their respective enhancements.

  • Evaluation of ASO’s performance in comparison to other optimization algorithms.

  • Identification of application areas where ASO has been effectively employed.

  • Discussion on the challenges and future research directions in the development of ASO algorithms.

Relevance:

For researchers and practitioners in optimization and computational intelligence, this review serves as a valuable resource, offering a consolidated understanding of ASO’s capabilities and guiding future developments in the field.

Conclusion

Dr. Providence Habumuremyi presents a compelling case as a highly promising and accomplished early-career researcher in civil and geotechnical engineering. His strong academic foundation, international research contributions, publication record, and multilingual competence support his suitability for the Best Researcher Award. While there is room to grow in terms of independent research leadership and impact-driven dissemination, his trajectory indicates a strong upward path in academic and engineering research.

Gokhan Basar | Mechanical Engineering | Best Researcher Award

Dr. Gokhan Basar | Mechanical Engineering | Best Researcher Award

Research Assistant at Industrial Engineering, Turkey

Dr. Gokhan Basar is a dedicated researcher and assistant professor in the Department of Industrial Engineering at Osmaniye Korkut Ata University, Turkey. Born on January 1, 1989, in Tarsus, Turkey, he has developed a strong academic and professional foundation in mechanical engineering. Dr. Basar holds a PhD in Mechanical Engineering, specializing in the production of reinforced aluminum matrix composites. He has contributed significantly to the field through his research on friction stir welding and optimization techniques, establishing himself as an expert in machinability and mechanical properties of materials. His commitment to advancing engineering knowledge is evident in his numerous publications and active participation in national and international conferences.

Profile:

Google Scholar

Strengths for the Award:

  1. Diverse Research Areas: Dr. Basar has an extensive range of research interests including Friction Stir Welding, machinability of materials, and optimization techniques. This diversity reflects a strong capability to contribute to various fields within engineering.
  2. Academic Qualifications: With a PhD in Mechanical Engineering and multiple relevant master’s and bachelor’s degrees, Dr. Basar possesses a solid educational foundation that underpins his research.
  3. Significant Contributions: His published works, including book chapters and numerous journal articles, indicate active engagement in research. The citation metrics (42 citations and an H-index of 4) highlight that his work is recognized and valued by the academic community.
  4. Research Methodology Expertise: Dr. Basar’s proficiency in experimental design and optimization methods, particularly the Taguchi Method and Grey Relational Analysis, showcases his ability to apply advanced statistical techniques to real-world engineering problems.
  5. Active Conference Participation: Regular attendance at national and international conferences demonstrates a commitment to staying updated with the latest developments in his field and sharing his findings with the broader scientific community.
  6. Journal Refereeing: Serving as a referee for multiple reputable journals illustrates his involvement in the academic process and recognition by peers.

Areas for Improvement:

  1. Increased Collaboration: While Dr. Basar has a solid publication record, collaboration with researchers from diverse fields could enhance the breadth and impact of his research.
  2. Enhancing Citation Impact: Although his citation metrics are commendable, focusing on publishing in high-impact journals could further increase his visibility and citation rate.
  3. Broader Public Engagement: Engaging with industry stakeholders and public forums could help translate his research findings into practical applications, increasing societal impact.
  4. Exploration of Emerging Technologies: Staying abreast of emerging technologies in materials science and mechanical engineering could provide new avenues for research and innovation.

Education:

Dr. Gokhan Basar’s educational journey began with a Bachelor’s degree in Mechanical Engineering, which laid the groundwork for his advanced studies. He earned his MSc in Mechanical Engineering from Iskenderun Technical University (2013-2016), where he focused on optimizing welding parameters in friction stir welding. His research culminated in a thesis that highlighted his proficiency in practical applications of engineering principles. Dr. Basar continued his academic pursuit at Osmaniye Korkut Ata University, where he completed his PhD in Mechanical Engineering (2017-2023). His doctoral research investigated the production of SiC and B4C particle-reinforced aluminum matrix composites through powder metallurgy, further showcasing his ability to innovate in materials engineering. Throughout his academic career, Dr. Basar has demonstrated a strong commitment to educational excellence and research development.

Experience:

Dr. Gokhan Basar has amassed extensive experience in academia, starting his career as a Research Assistant in the Department of Mechanical Engineering at Iskenderun Technical University from 2013 to 2016. His responsibilities included conducting research, assisting in teaching, and engaging in various engineering projects. In 2016, he transitioned to Osmaniye Korkut Ata University, where he currently serves as a Research Assistant in the Department of Industrial Engineering. In this role, Dr. Basar has focused on advancing knowledge in the fields of friction stir welding, materials machinability, and optimization methods. He has participated in numerous conferences, enhancing his professional network and contributing to the scientific community. His dedication to research and education has positioned him as a prominent figure in mechanical engineering, with a strong emphasis on innovative practices and experimental design.

Research Focus:

Dr. Gokhan Basar’s research focuses primarily on advanced welding techniques, particularly Friction Stir Welding (FSW), and the machinability and mechanical properties of materials. His expertise extends to optimization methods, including the Taguchi Method, Response Surface Methodology, and Grey Relational Analysis, enabling him to develop effective strategies for improving material performance and process efficiency. He is particularly interested in the production of composite materials, investigating the use of SiC and B4C particles in aluminum matrices to enhance their mechanical properties. His research also includes the design of experiments and multi-response optimization, providing insights into surface quality and operational parameters in various manufacturing processes. Dr. Basar’s commitment to innovation in mechanical engineering drives his work to address contemporary challenges and contribute to the evolution of engineering practices.

Publications Top Notes:

  1. Optimization of machining parameters in face milling using multi-objective Taguchi technique 📄
  2. Modeling and optimization of face milling process parameters for AISI 4140 steel 📄
  3. Determination of the optimum welding parameters for ultimate tensile strength and hardness in friction stir welding of Cu/Al plates using Taguchi method 📄
  4. Optimization of cutting parameters in hole machining process by using multi-objective Taguchi approach 📄
  5. Modeling and optimization for fly ash reinforced bronze-based composite materials using multi-objective Taguchi technique and regression analysis 📄
  6. Multi-response optimization in drilling of MWCNTs reinforced GFRP using grey relational analysis 📄
  7. Delik İşleme Prosesinde Kesme Parametrelerin Taguchi Metodu ve Regresyon Analiz Kullanılarak Modellenmesi ve Optimizasyonu 📄
  8. Kolemanit ve Boraks Takviyeli Fren Balatalarının Sürtünme Performansı 📄
  9. Sıcak presleme yöntemi ile üretilmiş uçucu kül takviyeli bronz matrisli fren balata malzemelerinin sürtünme-aşınma özellikleri üzerine kolemanit miktarının etkisi 📄
  10. Mathematical Modeling and Optimization of Milling Parameters in AA 5083 Aluminum Alloy 📄
  11. 316L Paslanmaz Çeliklerin Frezeleme işlemindeki Yüzey Pürüzlülüğün ANFIS ile Modellenmesi 📄
  12. Bronz Esaslı Kompozit Sürtünme Malzemelerin Üç Nokta Eğme Mukavemetinin Taguchi Metodu ile Optimizasyonu 📄
  13. Statistical Investigation of the Effect of CO2 Laser Cutting Parameters on Kerf Width and Heat Affected Zone in Thermoplastic Materials 📄
  14. A new hybrid meta-heuristic optimization method for predicting UTS for FSW of Al/Cu dissimilar materials 📄
  15. Prediction of surface hardness in a burnishing process using Taguchi method, fuzzy logic model and regression analysis 📄
  16. Multi-objective optimization of cutting parameters for polyethylene thermoplastic material by integrating data envelopment analysis and SWARA-based CoCoSo approach 📄
  17. Kompozit Malzemelerin Delme İşleminde İtme Kuvvetinin Taguchi Metodu ile Optimizasyonu ve Regresyon Analizi ile Tahmini 📄
  18. Tepki yüzeyi metodolojisi kullanılarak nanokompozitin delinmesinde oluşan itme kuvvetinin modellenmesi ve analizi 📄
  19. Analysis and Optimization of Ball Burnishing Process Parameters of AA 7075 Aluminium Alloy with Taguchi Method 📄
  20. The Effect of Colemanite and Borax Reinforced to the Friction Performance of Automotive Brake Linings 📄

Conclusion:

Dr. Gokhan Basar exemplifies the qualities of a strong candidate for the Research for Best Researcher Award. His extensive research experience, educational background, and contributions to the field of engineering position him as a noteworthy researcher. By focusing on collaboration, increasing his publication impact, and engaging with the broader community, he could further enhance his profile as a leading researcher. His commitment to advancing knowledge in his areas of expertise makes him a deserving candidate for this prestigious award.