Ganiyat Salawu | Engineering and Technology | Research Excellence Award

Dr. Ganiyat Salawu | Engineering and Technology | Research Excellence Award

University of KwaZulu-Natal,Durban | South Africa

Dr. Ganiyat Abiodun Salawu is a mechanical and mechatronics engineer and researcher with strong expertise in advanced manufacturing systems, robotics, renewable energy technologies, and intelligent engineering solutions. She holds a PhD in Mechanical Engineering (Mechatronics and Robotics) from the University of KwaZulu-Natal, South Africa, following earlier degrees in mechanical engineering and education from Nigerian institutions. Her academic and professional career spans lecturing, postgraduate supervision, research coordination, and postdoctoral research, with extensive experience in both university and polytechnic systems. Her research interests focus on disruptive manufacturing technologies, IoT-based systems, renewable energy optimization, smart automation, tribology, composite materials, and sustainable engineering design. Dr. Salawu has authored over 20 peer-reviewed journal and conference publications, with an approximate h-index of 3, and over 20 cumulative citations based on available scholarly records. She has received multiple competitive research grants, including TETFund institutional and doctoral awards, and was honored with an Award of Excellence as Best Researcher by the University of KwaZulu-Natal. Through impactful research, supervision, and innovation-driven teaching, she continues to contribute significantly to engineering education, sustainable technology development, and applied industrial research in Africa and beyond.

Citation Metrics (Scopus)

1200
1000
600
200
0

Citations
20

Documents
7
h-index
3

Citations

Documents

h-index


View Scopus Profile

Featured Publications

Dike Chijindu P.; Sam Obu C.V.; Imuran A.S.; Salawu G.A.; Shuaib A.A. (2025).
Production and Mechanical Evaluation of Bio-Composite Materials from Coconut, Palm Kernel and Periwinkle Shells as an Alternative to Grinding Wheel Production.

International Journal of Applied and Advanced Engineering Research, Vol. 8, No. 5, 2025

Jimoh A.A.; Iromini N.A.; Oladuntoye Q.O.; Ajiteru S.O.; Salawu G.A. (2024).
Design and Deployment of an Internet of Things Based Weather Station for Real-Time Monitoring of Environmental Conditions.

International Journal of Earth Design and Innovation Research, Vol. 3, No. 4, 2024

Dike Chijindu P.; Sam Obu C.V.; Imuran A.S.; Salawu G.A.; Shuaib A.A.; Afolabi A.A. (2025).
Investigating the Mechanical Performance of Offshore Wind Turbine Towers Using Finite Element Analysis for Sustainable Renewable Energy.

Journal of Engineering, Logical and Modelling Research, 2025

Investigation of Technical Feasibility and Efficiency of Wi-Fi Based Internet of Things Remote Monitoring and Control of Home Appliances.

International Journal of Science Research and Technology, Vol. 6, No. 9, pp. 121–135, 2024

Design and Development of Internet of Things Based Weather Station for Real-Time Monitoring of Environmental Conditions.

International Journal of Earth Design and Innovation Research, Vol. 3, No. 4, pp. 66–75, 2024

Liu Ying | Mechanical Engineering | Research Excellence Award

Dr. Liu Ying | Mechanical Engineering | Research Excellence Award

East China Jiaotong University | China

Ying Liu is a dedicated researcher and Lecturer specializing in vehicle engineering with a strong academic trajectory and growing research impact, reflected in an h-index of 2, 4 published documents, and 14 citations across indexed platforms. She earned a combined Master’s and PhD degree in Mechanical Engineering from Shanghai University, followed by a Bachelor’s degree in Mechanical Design, Manufacturing and Automation from Changchun Institute of Technology. Her professional career includes serving as a Lecturer at East China Jiaotong University, where she contributes to teaching, mentoring, and interdisciplinary research. Her work focuses on target optimization, image detection, reinforcement learning, computer vision, intelligent control, and smart vehicle technologies. She has completed five research projects, contributed to two national-level and multiple provincial and horizontal projects, and actively engages in consultancy with ten industry-linked initiatives. She has authored seven SCI-indexed papers, produced twenty-five patents, and participated in major scientific collaborations including a project funded with 5 million yuan. As a recipient of Jiangxi’s Early-Career Young Talents Program, she continues to advance innovation in intelligent vehicle systems. She remains committed to impactful research, advancing engineering applications, and contributing to societal and technological development.

Profile : Scopus

Featured Publications

Liu, Y., & [Co-author(s) if any]. (2025). Continuous path tracking of robots based on positioning error compensation with iterative learning control. IEEE Transactions on Instrumentation and Measurement.

Florin Popister | Mechanical Engineering | Engineering Research Excellence Award

Assoc. Prof. Dr. Florin Popister | Mechanical Engineering | Engineering Research Excellence Award

Technical University of Cluj-Napoca | Romania

Assoc. Prof. Dr. Eng. Florin Popișter is an accomplished researcher and academic in industrial engineering, mechanical design, and robotics. He earned his Ph.D. in Industrial Engineering from the Technical University of Cluj-Napoca, where he currently serves as an Associate Professor, contributing to teaching, research, and supervision in areas such as CAD/CAM systems, industrial robots, reverse engineering, and advanced manufacturing. His professional experience spans both academia and industry, including significant contributions as a design engineer at Gühring Romania, where he developed customized PCD/PCBN tools for the automotive sector. His research includes 3D printing technologies, robotic mechanisms, toolpath generation, workspace optimization, and digital manufacturing, with multiple Q1 journal publications in Polymers, Applied Sciences, and Mathematics. He has led and contributed to national and international research contracts, including H2020 Smart2 and projects focused on automation systems for the pharmaceutical industry. His achievements include a Best Paper Award, participation in Prototypes for Humanity, and invited professorships in Europe. His work continues to advance intelligent manufacturing, Industry 4.0 applications, and smart robotic systems.

Profile : Orcid

Featured Publications

Popescu, D., Dragomir, D., Popișter, F., & Dragomir, M. (2025). AI alignment to enhance production processes performance and resilience. In Book chapter. Springer.

Dragomir, M., Apolțan, D., Cioșan, A., & Popișter, F. (2025). Assessing the potential of emerging digital technologies to transform the production sector. Annals of the Academy of Romanian Scientists Series on Economy, Law and Sociology.

Popișter, F., Ciudin, P., Dragomir, M., & Goia, H. Ș. (2025). From assistive to intelligent: The development of a low-cost smart crutch system. In Book chapter. Springer.

Popișter, F. (2025). Experimental study of comprehensive performance analysis regarding the dynamical/mechanical aspects of 3D-printed UAV propellers and sound footprint. Polymers, 17(11), 1466.

Popișter, F., Goia, H. Ș., & Ciudin, P. (2025). Influence of polymers surface roughness on noise emissions in 3D-printed UAV propellers. Polymers, 17(8), 1015.

Rolf Jakoby | Electrical Engineering | Outstanding Scientist Award

Prof. Dr. Rolf Jakoby | Electrical Engineering | Outstanding Scientist Award

Technical University of Darmstadt | Germany

Prof. Dr.-Ing. Rolf Jakoby is an accomplished researcher in microwave engineering, with an outstanding academic impact reflected by an h-index of 43, 570 documents, and 8,158 citations. He holds distinguished academic qualifications, including a Dipl.-Ing. and Dr.-Ing. in electrical engineering, and has served in leading academic roles such as Full Professor and Head of the Microwave Engineering and Technology Group at TU Darmstadt. His extensive professional experience spans university teaching, advanced research leadership, and collaborative industrial projects with major institutions across Europe and beyond. His research interests include tunable microwave components, adaptive and reconfigurable RF systems, chipless RFID, microwave sensors, and biomedical microwave technologies. He has supervised more than fifty doctoral dissertations and contributed to over seventy major research projects funded by agencies such as DFG, EU Horizon, DLR, and major industrial partners. Widely recognized for his contributions, he has earned numerous awards, including best paper prizes, dissertation awards, and international honors such as the Leopold B. Felsen Award. His work continues to influence advancements in reconfigurable microwave systems, high-frequency materials, and next-generation communication technologies. Overall, his distinguished career demonstrates exemplary leadership, innovation, and long-standing contributions to global microwave engineering research.

Profile : Scopus

Featured Publications

A 100 GHz Switched Beam Patch Antenna Array With 4 × 4 Butler Matrix Based on Metallic-Nanowire-Filled Membrane. (2025). Microwave and Optical Technology Letters.

Ceramic-Based High-Q Retroreflectors for Sub-mm Localization in High-Temperature Environments. (2025). Conference paper.

Liquid Crystal Goes RF: From Gigahertz to Terahertz. (2025). IEEE Microwave Magazine.

Multigap-Waveguide Liquid Crystal Phase Shifter at Ka-Band. (2025). IEEE Microwave and Wireless Technology Letters.

A wireless W-band 3D-printed temperature sensor based on a three-dimensional photonic crystal operating beyond 1000 °C. (2024). Communications Engineering.

Leo Miguel González | Mechanical Engineering | Excellence in Research Award

Prof. Dr. Leo Miguel González | Mechanical Engineering | Excellence in Research Award

Universidad Politécnica de Madrid | Spain

Leo Miguel González is a distinguished Professor Titular at the Universidad Politécnica de Madrid, specializing in numerical methods in engineering, fluid mechanics, the Navier–Stokes equations, and fluid–structure interaction. With a strong academic foundation that includes degrees in Industrial Engineering, Physics, and a PhD in Engineering from the UPM, he has built a solid career spanning more than two decades in research and university teaching. His experience includes academic roles at Universidad Pontificia Comillas and later progressive appointments at UPM, where he achieved accreditation as Catedrático by ANECA and has obtained three research sexenios. González has contributed to major European and national R&D projects, including SLOWD , FOWTDAMP (Plan Nacional), and IMAGE, collaborating with leading institutions such as Airbus, CNR-INSEAN, and the University of Bristol. His research outputs include patents such as Visitando nuestra ciencia and FEMICAI, reflecting his commitment to innovation. His publication record, citation impact, and h-index are documented in international bibliographic databases such as Scopus and Web of Science. His work continues to advance aerospace propulsion, fluid mechanics, and computational modeling, reinforcing his reputation as a key contributor to European engineering research.

Profile : Google Scholar

Featured Publications

Macia, F., Antuono, M., González, L. M., & Colagrossi, A. (2011). Theoretical analysis of the no-slip boundary condition enforcement in SPH methods. Progress of Theoretical Physics, 125(6), 1091–1121.

Huera-Huarte, F. J., Bangash, Z. A., & González, L. M. (2014). Towing tank experiments on the vortex-induced vibrations of low mass ratio long flexible cylinders. Journal of Fluids and Structures, 48, 81–92.

Azcona, J., Munduate, X., González, L., & Nygaard, T. A. (2017). Experimental validation of a dynamic mooring lines code with tension and motion measurements of a submerged chain. Ocean Engineering, 129, 415–427.

Souto-Iglesias, A., Macià, F., González, L. M., & Cercos-Pita, J. L. (2013). On the consistency of MPS. Computer Physics Communications, 184(3), 732–745.

Huera-Huarte, F. J., Bangash, Z. A., & González, L. M. (2016). Multi-mode vortex and wake-induced vibrations of a flexible cylinder in tandem arrangement. Journal of Fluids and Structures, 66, 571–588.

Jiuping Xu | Petroleum Engineering | Best Researcher Award

Prof. Jiuping Xu | Petroleum Engineering | Best Researcher Award

Sichuan University, Business School | China

Prof. Jiuping Xu of Sichuan University is a distinguished scholar whose research spans applied mathematics, system science and complex-systems engineering, with a focus on decision and technology innovation for large-scale energy, environment, water-resource, circular economy and health-management systems. Educated with a PhD in applied mathematics from Tsinghua University under Prof. Shutie Xiao and a second PhD in physical chemistry from Sichuan University under Prof. Jiuli Luo, he has built a career at the interface of mathematics and engineering practice. He formulated the “TS-MG-AC” (Theory Spectrum Model Group Algorithm Cluster) paradigm for multivariate-multilevel systems, and developed multilevel dynamic equilibrium approaches in areas such as water allocation, circular economy systems and hydropower project management. His applied work has delivered significant societal and economic impact (for example in post-earthquake ecosystem reconstruction, irrigation-district water allocation and large hydropower construction). With an h-index of approximately 62 and over 14,979 citations, his publication output and influence are substantial. He has held leadership roles in major engineering-science teams and has contributed to policy formulation in China for resource, seismic-ecosystem and environmental systems. His research interests include fuzzy logic, multi-criteria decision making, large-scale system optimisation, circular economy modelling and low-carbon infrastructure innovation. In conclusion, Professor Xu is a prolific and impactful systems-engineer-scientist whose theoretical and applied contributions bridge mathematics, optimisation, engineering and environmental-economics to address pressing global challenges.

Profile : Scopus

Featured Publications

Xu, J., et al. (2025). Comprehensive benefits evaluation of low impact development using scenario analysis and fuzzy decision approach. Scientific Reports.

Xu, J., et al. (2025). Parental expectation and psychological distress of Chinese youth: The chain mediating effects of core self-worth and perceived stress. BMC Public Health.

Xu, J., et al. (2025). A co-gasification strategy of residual municipal solid waste and biomass for electricity generation optimization and carbon reduction. Energy.

Xu, J., et al. (2025). Predict-then-optimise based day-ahead scheduling towards demand response and hybrid renewable generation for wastewater treatment. Applied Energy.

Xu, J., et al. (2025). Industrial prosumption-based energy transition technologies investigation for wastewater sector. Renewable and Sustainable Energy Reviews.

Yuxin Zhang | Energy and Sustainability | Best Researcher Award

Mr. Yuxin Zhang | Energy and Sustainability | Best Researcher Award

Tongji University | China

Mr. Yuxin Zhang is a postgraduate student at Tongji University, specializing in Energy and Power with a focus on refrigeration and high-temperature heat pump systems. His academic journey is centered on advancing sustainable thermal energy technologies, particularly in the context of rail vehicle air-conditioning. Zhang has contributed significantly to the replacement of traditional refrigerants with low-GWP refrigerant mixtures, addressing both environmental and energy efficiency challenges. His research has been published in Energies, a leading SCI-indexed journal, with over 1 citations, an h-index of 1, and multiple supporting documents available through his publication record. Building on this foundation, he has applied for two invention patents related to energy-efficient refrigeration and heating systems. His collaborations with the Shanghai Refrigeration Society and industry-based projects highlight his applied research experience and commitment to bridging academic innovation with industrial implementation. Zhang’s interests span refrigeration cycles, high-temperature heat pump technologies, and sustainable cooling solutions, reflecting his dedication to green energy transitions. Recognized for his early yet impactful contributions, he has actively participated in research addressing climate-friendly alternatives in thermal management. With a growing publication profile and strong research outputs, he aspires to advance innovation in refrigeration engineering and contribute meaningfully to global sustainability goals.

Profiles : Scopus | Google Scholar 

Featured Publications

Zhang, Y., Cao, S., Zhao, L., & Cao, J. (2022). A case application of WRF-UCM models to the simulation of urban wind speed profiles in a typhoon. Journal of Wind Engineering and Industrial Aerodynamics, 220, 104874.

Liu, C., Zhang, Y., Yao, Y., & Huang, Y. (2019). Calculation method for flexural capacity of high strain-hardening ultra-high performance concrete T-beams. Structural Concrete, 20(1), 405–419.

Zhang, Y., Cao, S., & Cao, J. (2022). An improved consistent inflow turbulence generator for LES evaluation of wind effects on buildings. Building and Environment, 223, 109459.

Zhang, Y., Cao, S., Cao, J., & Wang, J. (2023). Effects of turbulence intensity and integral length scale on the surface pressure on a rectangular 5:1 cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 236, 105406.

Zhang, Y., Cao, S., & Cao, J. (2023). Implementation of an embedded LES model with parameter assessment for predicting surface pressure and surrounding flow of an isolated building. Journal of Wind Engineering and Industrial Aerodynamics. Advance online publication.

Rajeev Kumar | Engineering and Technology | Engineering Award of Excellence

Dr. Rajeev Kumar | Engineering and Technology  | Engineering Award of Excellence

Lovely professional University | India

Dr. Rajeev Kumar is an accomplished researcher and academician in Mechanical Engineering with over 15 years of teaching, research, and mentoring experience. He earned his Ph.D. in Mechanical Engineering from IKGPTU, Kapurthala (2023), preceded by an M.Tech in Design Engineering from NIT Kurukshetra (2010) and a B.Tech in Mechanical Engineering from Kurukshetra University (2007). Currently serving as Associate Professor and Assistant Dean at Lovely Professional University, he has contributed extensively to the fields of crack propagation and prognosis, metal matrix composites, polymer composites, and mechanical composites. His prolific academic output includes 74 publications with 874 citations, an h-index of 18, and 64 Scopus-indexed documents, reflecting strong global research visibility. Dr. Kumar has been actively engaged in guiding Ph.D. and postgraduate students while also participating in grant proposals such as the ISRO-funded project on fiber optic acoustic emission sensing. His dedication has earned him recognition, including the Research Excellence Award on Teacher’s Day Celebration 2024 at LPU. Beyond teaching, he has contributed as an editorial board member and reviewer for reputed international journals. Passionate about innovation, he also holds patents in renewable energy and mechanical system design. Dr. Kumar continues to inspire through impactful research, academic leadership, and scientific service.

Profile : Orcid

Featured Publications

“Design and analysis of a stairs-climbing military bot for efficient and stable movement on various terrains”

“Unveiling of mechanical, morphological, and thermal characteristics of alkali-treated flax and pine cone fiber   reinforced polylactic acid (PLA) composites: fabrication and characterizations”

“Exploring the implications of CoCrFeNiCu high entropy alloy coatings on tribomechanical, wetting behavior, and   interfacial microstructural characterizations in microwave-clad AISI 304 stainless steels”

“Synergistic Enhancement of Super Capacitive Performance Through Sol-Gel Auto-Combustion Synthesis of Nickel Ferrite Nano-Particles and Reduced Graphene Oxide Hybrid Nano-Composite Electrode”

“Corrosion analysis of stainless steel exposed to Karanja oil biodiesel: a comparative study with commercial           diesel fuel, surface morphology analysis, and long-term immersion effects in alternative fuels”