Providence Habumuremyi | Civil Engineering | Best Researcher Award

Dr. Providence Habumuremyi | Civil Engineering | Best Researcher Award

Postdoctoral Fellow, Fuzhou University, China.

Dr. Providence Habumuremyi, born on January 1, 1988, in Rwanda, is a distinguished civil engineer specializing in tunnel stability and geotechnical engineering. Currently a postdoctoral fellow at Fuzhou University, China, he earned his Doctor of Engineering from Beijing Jiaotong University, focusing on three-dimensional analytical methods for tunnel face stability in undrained clay grounds. His academic journey includes a Master’s degree in Civil Engineering from the same university and a Bachelor’s degree from the University of Rwanda. Dr. Habumuremyi’s professional experience spans roles such as Civil Engineer at Beijing Jinghangan Airport Engineering Co., Ltd., contributing to international airport projects in the Maldives and Zambia. His multilingual abilities and cross-cultural experiences enhance his collaborative research endeavors. Recognized for his analytical skills and innovative approaches, Dr. Habumuremyi continues to impact the field through research, publications, and contributions to major engineering projects.

Profile

Orcid

🎓 Education

  • Doctor of Engineering in Civil Engineering
    Beijing Jiaotong University, China (09/2019 – 06/2024)
    Dissertation: Three-Dimensional Analytical Continuous Upper Bound Limit Analyses for Face Stability of Shallow Shield Tunneling in Undrained Clay Ground
    Supervisor: Prof. Yan-Yong Xiang

  • Master of Engineering in Civil Engineering
    Beijing Jiaotong University, China (09/2015 – 06/2017)
    Thesis: Friction Pendulum Systems for Seismic Isolation of Structures in Near-Fault Regions
    Supervisor: Prof. Lin LiuResearcher Discovery+1AGRIS+1

  • Bachelor of Science in Civil Engineering
    University of Rwanda (01/2011 – 08/2014)
    Supervisor: Prof. Park Ildong

🏗️ Experience

  • Postdoctoral Researcher
    Fuzhou University, China (11/2024 – Present)
    Research Focus: Tunnel stability, ground and structural dynamics, geotechnical engineering.

  • Inspector
    Beijing Jianyetong Engineering Testing Technology Co., Ltd. (07/2024 – 11/2024)
    Responsibilities: Preparation of construction drawings, on-site surveying, attending technical meetings.

  • Civil Engineer
    Beijing Jinghangan Airport Engineering Co., Ltd. (07/2017 – 09/2019)
    Projects: Expansion of Maldives Velana International Airport; Construction of Ndola Simon Mwansa Kapwepwe International Airport, Zambia.
    Responsibilities: Preparation of construction drawings, site supervision, technical meetings, translation of technical documents (Chinese to English).

  • Director of Studies
    Collegio Santo Antonio Maria Zaccaria (01/2015 – 09/2015)
    Responsibilities: Supervision of teachers, curriculum implementation follow-up, teaching Mathematics, Physics, Technical Drawing, Scaffolding.

🔬 Research Focus 

Dr. Habumuremyi’s research centers on the stability analysis of tunnel faces, particularly in undrained clay conditions. He employs analytical and computational methods, including three-dimensional upper bound limit analyses, to assess and enhance the safety of shallow shield tunneling operations. His work extends to geotechnical engineering, focusing on soil-structure interaction, and the dynamics of structures under seismic loading. By integrating tools like MATLAB, SAP2000, ABAQUS, and OPTUM G2 & G3, he develops models that predict structural responses to various geotechnical challenges. His interdisciplinary approach aims to improve construction practices and inform the design of resilient infrastructure.

📚 Publication Top Notes

1. A 3-D Analytical Continuous Upper Bound Limit Analysis for Face Stability of Shallow Shield Tunneling in Undrained Clays

Journal: Computers and Geotechnics, December 2023
DOI: 10.1016/j.compgeo.2023.105779
Authors: Providence Habumuremyi, Yanyong Xiang

Summary:
This paper introduces a three-dimensional (3D) analytical upper bound limit method to evaluate face stability in shallow shield tunneling through undrained clay. Unlike previous two-dimensional models, the authors developed a 3D continuous velocity field based on a logarithmic spiral failure mechanism, offering more accurate predictions. The method considers various tunnel depths, diameters, and face pressures.

Key Contributions:

  • Developed a new continuous 3D velocity field using upper bound limit analysis.

  • Applied to shield tunneling in undrained clay (e.g., soft cohesive soil in urban areas).

  • Validated against numerical simulations (ABAQUS), showing good agreement.

  • Provided design charts for practicing engineers.

Relevance:
This model improves the safety and efficiency of tunnel construction in soft ground by offering realistic estimations of the support pressure required to prevent face collapse.

2. Determining Trigger Factors of Soil Mass Failure in a Hollow: A Study Based in the Sichuan Province, China

Journal: CATENA, September 2022
DOI: 10.1016/j.catena.2022.106368
Authors: Jules Maurice Habumugisha, Ningsheng Chen, Mahfuzur Rahman, Providence Habumuremyi, Etienne Tuyishimire, et al.

Summary:
This study investigates the main triggering factors of soil mass failure (landslides) in a specific hollow area of Sichuan Province, China. It uses field data, geostatistics, and geotechnical analysis to assess slope failure causes. Key parameters include slope angle, rainfall, vegetation cover, and soil composition.

Key Contributions:

  • Combined field sampling, laboratory testing, and remote sensing.

  • Identified critical depth and shear strength thresholds for failure.

  • Proposed mitigation techniques, including improved land management and vegetative cover.

Relevance:
Essential for improving slope stability prediction and disaster risk reduction in landslide-prone mountainous regions.

3. Friction Pendulum Systems for Seismic Isolation of Structures in Near-Fault Regions

Type: Master’s Thesis
Date: May 20, 2017
DOI: 10.13140/RG.2.2.19943.15527
Author: Providence Habumuremyi

Summary:
This thesis evaluates the performance of Friction Pendulum Systems (FPS) for seismic isolation in buildings located in near-fault zones. Near-fault ground motions can be intense and impulsive, posing challenges to conventional structural designs. The study uses numerical simulations in SAP2000 to demonstrate how FPS can effectively decouple structures from strong ground motions.

Key Contributions:

  • Designed FPS models for medium-rise buildings.

  • Compared base-isolated structures with fixed-base ones under near-fault motion.

  • Showed significant reduction in base shear and inter-story drift with FPS.

Relevance:
Supports the use of FPS isolation technology in earthquake engineering, particularly for civil infrastructure near seismic faults.

4. Mitigation Measures for Wind Erosion and Sand Deposition in Desert Railways: A Geospatial Analysis of Sand Accumulation Risk

  • Journal: Sustainability, April 29, 2025

  • DOI: 10.3390/su17094016

  • Authors: Mahamat Nour Issa Abdallah, Tan Qulin, Mohamed Ramadan, Providence Habumuremyi

Summary:

This study presents a comprehensive geospatial analysis aimed at identifying and mitigating the risks associated with wind erosion and sand deposition along desert railway corridors. Utilizing advanced GIS tools and remote sensing data, the research identifies high-risk zones where sand accumulation poses significant threats to railway infrastructure. The authors evaluate various mitigation strategies, including the implementation of sand fences, vegetation barriers, and optimized track alignments, to reduce the impact of aeolian processes on railway operations.

Key Contributions:

  • Development of a geospatial risk assessment model for sand accumulation along railway lines.

  • Identification of critical zones susceptible to wind-induced sand deposition.

  • Evaluation of mitigation measures and their effectiveness in different environmental contexts.

  • Recommendations for integrating geospatial analysis into railway planning and maintenance strategies.

Relevance:

The findings offer valuable insights for railway engineers and planners working in arid regions, providing tools and strategies to enhance the resilience of railway infrastructure against wind erosion and sand deposition.

5. Atom Search Optimization: A Systematic Review of Current Variants and Applications

  • Journal: Knowledge and Information Systems, April 12, 2025

  • DOI: 10.1007/s10115-025-02389-3

  • Authors: Sylvère Mugemanyi, Zhaoyang Qu, François Xavier Rugema, Yunchang Dong, Lei Wang, Félicité Pacifique Mutuyimana, Emmanuel Mutabazi, Providence Habumuremyi, Rita Clémence Mutabazi, et al.

Summary:

This comprehensive review delves into the Atom Search Optimization (ASO) algorithm, a nature-inspired metaheuristic optimization technique. The paper systematically categorizes existing variants of ASO, analyzing their structural modifications, performance enhancements, and application domains. It also highlights the algorithm’s adaptability in solving complex optimization problems across various fields, including engineering design, machine learning, and operational research.

Key Contributions:

  • Classification and analysis of existing ASO variants and their respective enhancements.

  • Evaluation of ASO’s performance in comparison to other optimization algorithms.

  • Identification of application areas where ASO has been effectively employed.

  • Discussion on the challenges and future research directions in the development of ASO algorithms.

Relevance:

For researchers and practitioners in optimization and computational intelligence, this review serves as a valuable resource, offering a consolidated understanding of ASO’s capabilities and guiding future developments in the field.

Conclusion

Dr. Providence Habumuremyi presents a compelling case as a highly promising and accomplished early-career researcher in civil and geotechnical engineering. His strong academic foundation, international research contributions, publication record, and multilingual competence support his suitability for the Best Researcher Award. While there is room to grow in terms of independent research leadership and impact-driven dissemination, his trajectory indicates a strong upward path in academic and engineering research.

Dalia El- Gazzar | Vibration and Dynamics | Best Researcher Award

Dr Dalia El- Gazzar | Vibration and Dynamics | Best Researcher Award

Dr Dalia El- Gazzar, National water research center, Egypt

Dr. Dalia Mohamed Sadek El-Gazzar is an accomplished expert in mechanical and electrical engineering with over 24 years of experience at the Mechanical & Electrical Research Institute (MERI). Specializing in optimizing hydro-electro-mechanical systems, her work has significantly advanced predictive maintenance and dynamic analysis of pumping stations. She holds a Ph.D. in Mechanical Engineering from Menoufia University and has contributed extensively to technical research and education, including teaching advanced courses on vibration analysis and predictive maintenance. Her dedication to improving the performance and reliability of drainage and irrigation systems underscores her commitment to engineering excellence.

Publication Profile

Scopus

Strengths for the Award

  1. Extensive Experience: Dalia Mohamed Sadek El-Gazzar has over 24 years of experience at the Mechanical & Electrical Research Institute (MERI), focusing on optimizing the operation and performance of hydro-electro-mechanical components in drainage and irrigation systems. This long-standing experience is a strong point for the award.
  2. Leadership Roles: She has held significant leadership roles, such as Director Deputy and Head of the Mechanical Department at MERI. Additionally, she has led multiple research projects related to dynamic analysis and quality control in irrigation and drainage systems.
  3. Research Contributions: Dalia has published numerous papers in reputable journals, highlighting her contributions to improving the dynamic performance and reliability of pumping systems. Her work in vibration analysis and preventive maintenance is particularly noteworthy.
  4. Educational Background: With a Ph.D. in Mechanical Engineering focused on vibration analysis of pumping systems, coupled with an M.Sc. and B.Sc. in related fields, her strong academic background supports her candidacy.
  5. Technical Expertise: Dalia has technical expertise in areas such as structural and mechanical vibration, fault detection, dynamic and hydraulic assessment, and preventive maintenance of rotating machinery.
  6. Conferences and Workshops: Her participation in a wide range of international conferences and workshops demonstrates her active involvement in the research community and her commitment to continuous learning and dissemination of knowledge.

Areas for Improvement

  1. Broader Impact: While her work is highly specialized in the field of mechanical and electrical systems for water resources, expanding her research to broader applications or interdisciplinary studies might enhance her impact and visibility within the research community.
  2. International Collaboration: Although she has participated in international conferences, increasing collaboration with international researchers or institutions could strengthen her research portfolio and provide diverse perspectives.
  3. Innovation and Patents: Emphasizing innovation through the development of new technologies or securing patents could further distinguish her work and contribute to practical advancements in her field.

Education

Dr. Dalia Mohamed Sadek El-Gazzar earned her Ph.D. in Mechanical Engineering from Menoufia University in February 2012, with a focus on vibration analysis of pumping systems with variable speed drives. She completed her M.Sc. in April 2004, studying the impact of bearing faults on dynamic behavior and power consumption in water pumps. Her B.Sc., obtained in May 1999, was in Production Engineering and Mechanical Design from the same institution. Her academic background has laid a strong foundation for her expertise in vibration analysis and predictive maintenance.

Experience

Dr. El-Gazzar’s professional journey spans over two decades, with roles including Director Deputy and Head of the Mechanical Department at MERI. She has led critical research projects on dynamic analysis and quality control in irrigation and drainage systems. Her experience includes hands-on inspection, calibration, and dynamic assessment of pumping stations. She has also contributed to numerous technical investigations and reports, enhancing system performance and reliability. Her role as an educator has involved teaching advanced engineering courses and training international engineers.

Research Focus

Dr. El-Gazzar’s research focuses on the dynamic performance and reliability of hydro-electro-mechanical systems in irrigation and drainage. Her work extensively covers vibration analysis, predictive maintenance, and fault diagnosis of pumping stations. She has explored the effects of variable speed drives, bearing faults, and structural vibrations on system efficiency. Her studies aim to optimize system performance, enhance reliability, and contribute to sustainable water resource management. Her research has significantly advanced the understanding and application of dynamic analysis in improving engineering practices.

Publication Top Notes

“Enhancing Efficiency and Dynamic Performance of Bearings in Pumping Stations” 📈

“Dynamic Performance Application of A Variable Speed Centrifugal Pump” 🚀

“Effect of Critical Speed on the Dynamic and Hydraulic Performance of a Variable Speed Pump” 🔧

“Vibration Analysis of Centrifugal Pump with Variable Speed Drives” ⚙️

“Evaluating Efficiency and Safety of Aerators in a Sanitary Drainage Station Using Vibration Analysis” 🔍

“Investigate the Effect of Fan Configuration on the Performance of Aeration Units for Waste Water Treatment” 💧

“Effect of Motor Vibration Problem on the Power Quality of Water Pumping Stations” ⚡

Conclusion

Dalia Mohamed Sadek El-Gazzar is a highly qualified candidate for the Best Researcher Award, given her extensive experience, leadership roles, and significant contributions to research in the field of mechanical and electrical systems for water resources. Her work has made valuable improvements in the performance and reliability of irrigation and drainage systems. While there is room for expanding her research’s impact and international collaboration, her current achievements make her a strong contender for the award.

 

Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto, Robert Bosch GmbH,  Germany

Ralston Pinto, born on October 31, 1994, in India, is a mechanical engineer specializing in modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. Currently pursuing a PhD at RWTH Aachen University in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, he focuses on predicting contact mechanics in manufactured cells. Ralston’s expertise extends to finite element methods, material subroutines, and automation using Python and MATLAB. He has also worked on process influences on sensing elements during his master’s thesis at Bosch and has substantial experience in project management from his tenure at Hamon Group in India. Ralston is driven by the challenge of solving real-time engineering problems and values environments that foster innovative thinking and professional growth.

Publication Profile

Orcid 

Education

Ralston Pinto is currently pursuing his PhD in Mechanical Engineering at RWTH Aachen University, with a project focused on modeling and simulation of SOFC contacts in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich. He holds a Master of Science in Mechanical Engineering from Rheinwaal University of Applied Sciences, where he studied process engineering, materials, and simulation, earning a final grade of 1.8. His master’s thesis focused on understanding process influences on crack failure modes in exhaust gas sensors. Ralston completed his Bachelor of Engineering in Mechanical Engineering from the University of Mumbai, specializing in structural mechanics, fluid mechanics, simulation and CAD, thermodynamics, and process engineering. His bachelor’s thesis involved designing and assembling a pedal-powered water purification vehicle to address water scarcity in rural India.

Experience 

Ralston Pinto is currently engaged in doctoral research at Robert Bosch GmbH in Bamberg, Germany, focusing on the modeling and simulation of SOFC contacts using finite element methods. His work involves investigating the pressures on Solid Oxide Cell contacts and developing material subroutines for anisotropic plasticity. Previously, he completed a master’s thesis at Bosch in Stuttgart, Germany, exploring crack failure modes in exhaust gas sensors. Ralston also interned at Bosch, working on developing protective coatings for sensor elements. His early career includes a position as an Assistant Project Engineer at Hamon Group in Mumbai, India, where he coordinated national-level power sector projects, managed resource allocation, and controlled production processes. His diverse experiences have equipped him with a unique understanding of both project management and hands-on engineering tasks.

Awards and Honors

Ralston Pinto has been recognized for his academic excellence and professional contributions. He received the Deutschland Stipendium from the Bundesministerium für Bildung und Forschung, awarded for his outstanding academic performance at Rheinwaal University of Applied Sciences. This prestigious scholarship is given to students who demonstrate exceptional academic achievements and social commitment. During his tenure at Bosch, Ralston was involved in significant research projects that led to the implementation of his findings in the field. His contributions to the modeling and simulation of SOFC contacts and process influences on sensor failure modes have been well-received in the scientific community. Ralston’s dedication to solving real-world engineering problems and his innovative approach to research have earned him accolades and recognition from both academic and professional circles.

Research Focus 

Ralston Pinto’s research primarily focuses on the modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. His doctoral thesis at RWTH Aachen University, in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, aims to predict the contact mechanics of manufactured cells, incorporating non-ideal aspects like tolerance distributions and uneven profiles. Ralston employs finite element methods, homogenization techniques, and anisotropic plasticity subroutines in his simulations. He also integrates Python and MATLAB for automation and data generation, utilizing machine learning methods for optimization. His master’s research at Bosch involved understanding process influences on crack failure modes in exhaust gas sensors, where he developed experimental methods and analyzed empirical data. Ralston’s broad research interests include computational fluid dynamics (CFD), materials science, process engineering, and the development of innovative solutions for real-world engineering challenges.

Publication Top Notes

A constitutive model for homogenized solid oxide cell contacts with dimensional tolerances

Homogenization of fuel cell interconnects to determine the contacting configuration in a stack

Grzegorz Swit | Civil Engineering Award | Best Researcher Award

Prof Grzegorz Swit | Civil Engineering Award | Best Researcher Award

Prof Grzegorz Swit, Kielce University of Technology,Poland

🌍 Prof. Grzegorz  Świt, born on January 29, 1971, in Kielce, is a Polish civil engineer and full professor at Kielce University of Technology. With a Ph.D. and habilitation in technical sciences, he specializes in building structures. He serves as Dean of the Faculty of Construction and Architecture and heads the Department of Strength of Building Materials and Structures. His expertise spans project management (PRINCE2®), foreign languages (English B2, Russian B1), and accreditation auditing. Świt collaborates extensively with industry leaders like Polska Spółka Gazownictwa and “CIECH” S.A., focusing on R&D and production continuity projects. 🏗️

Publication Profile

Orcid

Education

prof Grzegorz  Świt, a civil engineer graduated from Kielce University of Technology in 1994, expanded his expertise with an MSc in construction, specializing in Building Structures in 1996. Continuing his academic journey, he earned a doctorate in technical sciences in 2001 and further achieved habilitation in 2012, all from Kielce University of Technology. Recognized as a full professor by the President of Poland in 2021, Świt’s career embodies dedication to academia and research in building materials and structures. 🏗️

Experience

Prof Grzegorz Świt has been an integral part of Kielce University of Technology since February 1993, starting as a full-time engineer and technical staff until 1995 with grants from Professors L. Gołaski and Z. Kowal. He progressed through roles as an assistant and assistant professor in the Department of Strength of Materials until 2013, when he became a full professor. Since 2020, he has led the Department of Strength of Building Materials and Structures and served as Dean of the Faculty of Construction and Architecture (2020-2024). Appointed as a Full Professor by the President of Poland in 2021, Świt also contributes as an independent technical auditor at the Polish Accreditation Center. 🏢

Research Focus

👨‍🏫 Grzegorz Świt is a Dean and Full Professor at Kielce University of Technology, Poland. His research focuses on the application of the acoustic emission method for structural health monitoring, with significant contributions to materials science and engineering. He has authored numerous articles and conference papers, exploring topics such as non-destructive testing methods, fracture mechanics, and smart city infrastructure. Grzegorz is actively involved in advancing innovative engineering solutions, particularly in monitoring the quality and integrity of steel and composite structures using experimental and numerical approaches. 📚🔬

Publication Top Notes