Birgitte Ahring | Engineering and Technology | Best Researcher Award

Prof. Birgitte Ahring | Engineering and Technology | Best Researcher Award

Professor ,Washington State University ,United States

Dr. Birgitte Kiær Ahring is a distinguished global expert in biofuels, renewable energy, and clean technologies. Currently a Professor at Washington State University (WSU) and Head of the BioScience & Technology Group at the Bioproducts, Science & Engineering Laboratory (BSEL), she has led pioneering research in cellulosic ethanol, biogas, and renewable natural gas. With a career spanning decades, she has held prominent roles across academia, industry, and policy—including as founder of BioGasol Aps and advisor to international organizations such as the UNDP and World Bank. Dr. Ahring’s leadership in Denmark and the U.S. has driven the advancement of sustainable energy systems globally. Her commitment to translating science into practice has earned her numerous accolades, including Washington State’s Research Excellence Award and a gubernatorial honor as “Washingtonian for the Day.” With over 555 scientific contributions and 11 patents, she remains a driving force in the bioeconomy and environmental innovation.

Professional Profile

orcid

🎓 Education

Dr. Birgitte Kiær Ahring holds a Ph.D. in a life sciences field related to biotechnology or bioengineering, though her exact alma mater and thesis details are not listed. Her academic trajectory is rooted in biotechnology and chemical/biological engineering, fields that underpin her extensive contributions to renewable energy and clean technologies. Her foundational education laid the groundwork for a multifaceted career that bridges science, engineering, policy, and industrial application. She has also been involved in academic leadership and curriculum development through professorships at institutions such as the Technical University of Denmark (DTU), University of California, Los Angeles (UCLA), and Washington State University. Her interdisciplinary background and international engagements—ranging from Denmark to the U.S., and from Africa to Asia—reflect a rich academic foundation and lifelong commitment to sustainable energy research and education.

💼 Experience

Dr. Ahring’s professional journey reflects over three decades of leadership in biotechnology and renewable energy. Since 2008, she has served as Professor at WSU and previously directed the BSEL, where she established state-of-the-art research facilities. She founded and led BioGasol Aps and was CEO of the Maxifuel Pilot Plant in Denmark. From 2002–2008, she led the Danish Centre for Biofuels and BST division at DTU. At UCLA, she served as Professor of Civil & Environmental Engineering. Her governmental and advisory roles include being a Board Member of Energinet.dk and a consultant to USDA and multiple UN agencies. She has contributed to renewable energy implementation across Latin America, Africa, and Asia. She continues to advise research campaigns and editorial boards internationally. Through this experience, she has merged policy, practice, and research into a cohesive and influential professional impact.

🏆 Awards and Honors

Prof. Birgitte Ahring has earned numerous prestigious awards that honor her transformative research and global influence in bioengineering. In 2008, she received the Washington State Star Researcher Award valued at $2.5 million for excellence in renewable energy innovation. In 2021, she was recognized with the WSU Chancellor’s Distinguished Research Excellence Award. She was named “Washingtonian for the Day” by Governor Jay Inslee in 2022, acknowledging her service to the state’s clean energy transition. In 2023, she received the Anjan Boise Outstanding Research Award, and in 2024, she earned WSU’s Research Excellence Award. These accolades reflect her leadership in scientific discovery, commercialization, and sustainability-focused innovation. Additionally, her numerous editorial and board appointments in academia and industry further affirm her authority in the global bioeconomy and her role as a mentor and policy influencer.

🔍 Research Focus

Prof. Ahring’s research centers on clean technology for biofuels, biochemicals, and renewable natural gas (RNG). She is a world leader in cellulosic ethanol production, thermophilic anaerobic digestion, and advanced wet oxidation (AWOEx) pretreatment technologies. Her work explores the decarbonization of energy systems through biological and chemical conversion of lignocellulosic biomass, waste feedstocks, and CO₂ into fuels and valuable bio-products. She is especially focused on microbial consortia engineering and syngas fermentation to develop sustainable aviation fuel (SAF) and medium-chain volatile fatty acids. She has significantly advanced microbial hydrogen kinetics and homoacetogenesis, aiming to optimize the energy yields and carbon efficiencies in bioreactors. Her integrated approach—spanning lab research, pilot plants, and industrial applications—bridges science, engineering, and policy. Through over 555 publications and collaborative global research, Prof. Ahring is reshaping bioresource technology and offering scalable solutions for climate-resilient energy systems.

📚 Publication Top Notes

 Membrane Technologies for Separating Volatile Fatty Acids Produced Through Arrested Anaerobic Digestion: A Review

  • Journal: Clean Technologies, June 2025

  • Authors: Angana Chaudhuri, Budi Mandra Harahap, Birgitte K. Ahring

  • Summary:
    This review explores state-of-the-art membrane-based separation technologies for volatile fatty acids (VFAs) derived from arrested anaerobic digestion. It emphasizes operational efficiency, selectivity, and integration potential in biorefineries, highlighting nanofiltration, pervaporation, and forward osmosis as promising routes for sustainable VFA recovery.

Advancing Thermophilic Anaerobic Digestion of Corn Whole Stillage: Lignocellulose Decomposition and Microbial Community Characterization

  • Journal: Fermentation, June 2024

  • Authors: Alnour Bokhary, Fuad Ale, Richard Garrison, Birgitte K. Ahring

  • Summary:
    The study investigates thermophilic anaerobic digestion (AD) of corn whole stillage, focusing on lignocellulosic breakdown and microbial dynamics. It reveals enhanced methane yield and stable digestion due to synergistic microbial interactions, underlining the importance of community structure in optimizing AD processes.

 Acetate Production by Moorella thermoacetica via Syngas Fermentation: Effect of Yeast Extract and Syngas Composition

  • Journal: Fermentation, September 2023

  • Authors: Budi Mandra Harahap, Birgitte K. Ahring

  • Summary:
    This paper examines acetate production from syngas using Moorella thermoacetica. It discusses how varying yeast extract concentrations and syngas composition affect yields, emphasizing the role of nutrient balance and gas ratios in optimizing microbial fermentation for bio-based acetic acid.

 Enhancing Acetic Acid Production in In Vitro Rumen Cultures by Addition of a Homoacetogenic Consortia from a Kangaroo

  • Journal: Fermentation, September 2023

  • Authors: Renan Stefanini Lopes, Birgitte K. Ahring

  • Summary:
    Innovative research demonstrating the enhancement of acetic acid production in rumen cultures by adding kangaroo-derived homoacetogens. The study also investigates methanogen inhibition and almond biochar’s role in altering fermentation profiles, suggesting applications in livestock and bioenergy.

 Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review

  • Journal: Microorganisms, April 2023

  • Authors: Budi Mandra Harahap, Birgitte K. Ahring

  • Summary:
    This comprehensive review analyzes the full cycle of acetate production from biomass-derived syngas. It discusses gasification parameters, microbial strain selection, and bioreactor design, proposing integrated systems for sustainable acetate generation from lignocellulosic residues.

Conclusion

Engineering Award, Technology Award, Best Engineering Award, Global Technology Award, Engineering Innovation Award, Technology Excellence Award, Emerging Engineer Award, Tech Pioneer Award, Digital Engineering Award, STEM Innovation Award, Engineering and Technology Recognition, Academic Technology Award, Young Engineer Award, Women in Engineering Award, Smart Tech Award, Mechanical Engineering Award, Electrical Engineering Award, Civil Engineering Award, Software Engineering Award, Engineering Leadership Award, AI Technology Award, Robotics Award, Engineering Design Award, Sustainable Engineering Award, Innovative Engineer Award, Best Technologist Award, Engineering R&D Award, Engineering Educator Award, Future Tech Award, Engineering Breakthrough Award, Global Engineering Talent Award, Tech Achievement Award, Industry Technology Award, Next Gen Engineering Award, Excellence in Technology Award, Engineering Startup Award, Engineering Invention Award, Engineering Visionary Award, Lifetime Achievement in Engineering Award, Engineering and Technology Research Award

 

Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto, Robert Bosch GmbH,  Germany

Ralston Pinto, born on October 31, 1994, in India, is a mechanical engineer specializing in modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. Currently pursuing a PhD at RWTH Aachen University in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, he focuses on predicting contact mechanics in manufactured cells. Ralston’s expertise extends to finite element methods, material subroutines, and automation using Python and MATLAB. He has also worked on process influences on sensing elements during his master’s thesis at Bosch and has substantial experience in project management from his tenure at Hamon Group in India. Ralston is driven by the challenge of solving real-time engineering problems and values environments that foster innovative thinking and professional growth.

Publication Profile

Orcid 

Education

Ralston Pinto is currently pursuing his PhD in Mechanical Engineering at RWTH Aachen University, with a project focused on modeling and simulation of SOFC contacts in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich. He holds a Master of Science in Mechanical Engineering from Rheinwaal University of Applied Sciences, where he studied process engineering, materials, and simulation, earning a final grade of 1.8. His master’s thesis focused on understanding process influences on crack failure modes in exhaust gas sensors. Ralston completed his Bachelor of Engineering in Mechanical Engineering from the University of Mumbai, specializing in structural mechanics, fluid mechanics, simulation and CAD, thermodynamics, and process engineering. His bachelor’s thesis involved designing and assembling a pedal-powered water purification vehicle to address water scarcity in rural India.

Experience 

Ralston Pinto is currently engaged in doctoral research at Robert Bosch GmbH in Bamberg, Germany, focusing on the modeling and simulation of SOFC contacts using finite element methods. His work involves investigating the pressures on Solid Oxide Cell contacts and developing material subroutines for anisotropic plasticity. Previously, he completed a master’s thesis at Bosch in Stuttgart, Germany, exploring crack failure modes in exhaust gas sensors. Ralston also interned at Bosch, working on developing protective coatings for sensor elements. His early career includes a position as an Assistant Project Engineer at Hamon Group in Mumbai, India, where he coordinated national-level power sector projects, managed resource allocation, and controlled production processes. His diverse experiences have equipped him with a unique understanding of both project management and hands-on engineering tasks.

Awards and Honors

Ralston Pinto has been recognized for his academic excellence and professional contributions. He received the Deutschland Stipendium from the Bundesministerium für Bildung und Forschung, awarded for his outstanding academic performance at Rheinwaal University of Applied Sciences. This prestigious scholarship is given to students who demonstrate exceptional academic achievements and social commitment. During his tenure at Bosch, Ralston was involved in significant research projects that led to the implementation of his findings in the field. His contributions to the modeling and simulation of SOFC contacts and process influences on sensor failure modes have been well-received in the scientific community. Ralston’s dedication to solving real-world engineering problems and his innovative approach to research have earned him accolades and recognition from both academic and professional circles.

Research Focus 

Ralston Pinto’s research primarily focuses on the modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. His doctoral thesis at RWTH Aachen University, in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, aims to predict the contact mechanics of manufactured cells, incorporating non-ideal aspects like tolerance distributions and uneven profiles. Ralston employs finite element methods, homogenization techniques, and anisotropic plasticity subroutines in his simulations. He also integrates Python and MATLAB for automation and data generation, utilizing machine learning methods for optimization. His master’s research at Bosch involved understanding process influences on crack failure modes in exhaust gas sensors, where he developed experimental methods and analyzed empirical data. Ralston’s broad research interests include computational fluid dynamics (CFD), materials science, process engineering, and the development of innovative solutions for real-world engineering challenges.

Publication Top Notes

A constitutive model for homogenized solid oxide cell contacts with dimensional tolerances

Homogenization of fuel cell interconnects to determine the contacting configuration in a stack