Shantao Ping | Computer Vision | Best Researcher Award

Mr. Shantao Ping | Computer Vision | Best Researcher Award

Associate Senior Engineer, Qiyuan Lab, China

Shantao Ping is an Associate Senior Engineer at Qiyuan Lab, specializing in computer vision, artificial intelligence, and large-scale model algorithms. With a Master’s degree in Computer Science, Shantao has a proven track record of driving innovation through cutting-edge research and development. He has contributed to over 28 research and industry projects and holds 14 national invention patents. His collaborative project with Baidu, an AI-powered medical question-answering system, significantly enhanced user engagement and earned him the prestigious Baidu Best Engineer Award. Shantao is also an active member of the Chinese Institute of Command and Control, where he continuously advances the frontiers of intelligent simulation, image processing, and natural language processing. His work focuses on solving complex engineering problems and has made substantial contributions to simulation scene construction and few-shot object recognition. Passionate about applied research, Shantao Ping is committed to shaping the future of intelligent computing through practical and scalable solutions.

Publication Profile

Education

Shantao Ping holds a Master’s degree in Computer Science from an esteemed institution, equipping him with solid expertise in artificial intelligence, computer vision, and advanced computational algorithms. He also holds the professional qualification of Associate Senior Engineer, recognized by the Ministry of Human Resources and Social Security (MOHRSS), Beijing, China. This designation reflects his deep technical proficiency and leadership in engineering research and development. Throughout his academic and professional training, Shantao focused on bridging theoretical foundations with real-world applications, emphasizing innovation in structured light calibration, simulation modeling, and machine learning-based image processing. His educational journey laid the groundwork for his current role as a highly effective engineer, capable of contributing to both research excellence and industrial breakthroughs. Shantao’s education emphasizes interdisciplinary collaboration, practical application, and a research-driven approach that aligns perfectly with his long-standing commitment to technological advancement and cutting-edge innovation in the rapidly evolving fields of AI and computer vision.

Experience

Shantao Ping is currently an Associate Senior Engineer at Qiyuan Lab, where he has spearheaded numerous high-impact projects in computer vision, AI, and simulation technologies. Over his career, he has successfully completed 28 research and consultancy projects, including a notable collaboration with Baidu to develop an AI-powered medical Q&A system that significantly improved user engagement metrics. His career highlights include leading teams in the development of large-scale model algorithms, simulation scene construction, and few-shot object recognition frameworks. Shantao’s practical experience is reinforced by 14 published or in-process patents and multiple software development achievements, including tools for multi-type algorithm execution and sonar simulation imaging. His work has consistently demonstrated high relevance to industry needs and national innovation strategies. Recognized with the Baidu Best Engineer Award, Shantao continues to push the boundaries of applied AI and intelligent systems. He is also actively involved in the Chinese Institute of Command and Control, enhancing his contributions to the field.

Research Focus

Shantao Ping’s research is primarily centered on computer vision, image processing, natural language processing (NLP), and foundation models. His work addresses critical challenges in simulation scene reconstruction, few-shot object recognition, structured light calibration, and human-computer interaction assisted by large models. He focuses on developing algorithms that integrate simulation with AI to achieve realistic scene modeling and real-time data processing. Shantao is particularly interested in the intersection of AI and simulation, leveraging intelligent algorithms to enhance perception, decision-making, and scene understanding in complex environments. His innovative research in multi-object tracking and global graph matching is paving the way for advanced applications in autonomous systems and smart interaction platforms. Through national patents and practical deployments, he has made significant strides in developing intelligent, scalable solutions that are not only theoretically sound but also practically impactful, contributing directly to the fields of healthcare, simulation technology, and large-scale data interaction.

Publication Top Notes

  1. Multi-view Multi-object Tracking Based on Global Graph Matching Structure (Conference Paper)

    • Authors: Shantao Ping, Chao Li, Hao Sheng, Jiahui Chen, Zhang Xiong

    • Summary: This work proposes a novel global graph matching framework for tracking multiple objects across multiple viewpoints, significantly improving tracking accuracy in complex scenes.

  2. A Method and Apparatus for Specific Target Reconnaissance by Unmanned Aerial Vehicle (Patent)

    • Authors: Shantao Ping, Ying He

    • Summary: Introduces a UAV-based reconnaissance system with enhanced precision for specific target detection in dynamic environments.

  3. A Method, Apparatus, and Device for 3D Scene Construction (Patent)

    • Authors: Shantao Ping, Xulong Ma, Ying He

    • Summary: Details a system for efficient 3D scene modeling using intelligent algorithms, optimizing both speed and accuracy.

  4. Method for Human-Computer Interaction Assisted by Large Models (Patent)

    • Authors: Shantao Ping, Xulong Ma, Ying He, Xiaoqiang Jin, Pinjie Li, Qianchuan Zhao

    • Summary: Presents a human-computer interaction framework enhanced by large foundational models for improved user experience and system adaptability.

  5. Method, Apparatus, Device, and Storage Medium for Generating Sonar Simulated Images (Patent)

    • Authors: Shantao Ping, Xulong Ma, Ying He, Jiacheng Li

    • Summary: Describes a sonar image simulation method that increases the fidelity and reliability of underwater detection simulations.

Conclusion

Shantao Ping is a highly capable, application-driven researcher with an impressive track record of industry-relevant projects, innovative patents, and impactful collaborations, particularly in AI and computer vision. The strong applied research portfolio and demonstrated ability to solve real-world problems make him a solid candidate for the Best Researcher Award. However, to fully align with the traditional benchmarks of this award (which often emphasize academic citations and international recognition), increasing the number of SCI/Scopus journal publications, improving citation metrics, and pursuing more visible academic leadership roles would be beneficial.

Qi Liang | Pattern Recognition | Excellence in Research

Mr Qi Liang | Pattern Recognition | Excellence in Research

Master in Tongji University at China

Qi Liang is a dedicated researcher and master’s student at Tongji University, PR China, specializing in mechanical engineering. With a strong foundation in industrial engineering from Jiangsu University of Science and Technology, Qi has a keen interest in advancing technology through innovative research. Recognized for introducing self-supervised learning methods in semiconductor applications, Qi’s work aims to solve complex challenges in pattern recognition. Their publication in Engineering Applications of Artificial Intelligence reflects a commitment to high-impact research. With multiple ongoing projects and a focus on practical applications, Qi is paving the way for efficient solutions in the semiconductor industry.

Profile

Google Scholar

Strengths for the Award

  1. Innovative Research: Qi Liang has introduced a self-supervised learning method for few-shot learning in semiconductor applications, demonstrating originality and a significant contribution to the field.
  2. Publication Record: The recent publication in Engineering Applications of Artificial Intelligence showcases a commitment to high-quality research, adding to the credibility of the work.
  3. Diverse Research Interests: With a focus on computer vision, multi-modal learning, and fault diagnosis, Qi’s work spans multiple cutting-edge areas, which increases the potential impact of the research.
  4. Practical Applications: The research addresses real-world challenges in the semiconductor industry, offering low-cost, efficient methods that have immediate applicability.
  5. Academic Engagement: Qi’s active involvement in ongoing projects and industry collaborations indicates a robust engagement with both academic and practical aspects of research.

Areas for Improvement

  1. Broader Collaboration: Expanding collaborations with international researchers could enhance the research’s visibility and applicability on a global scale.
  2. Increased Publication Volume: While the current publication is commendable, a more extensive publication record could further establish Qi’s expertise and leadership in the field.
  3. Outreach and Communication: Engaging in more outreach activities, such as conferences and seminars, could help disseminate findings and foster connections within the research community.

Education 

Qi Liang graduated with a Bachelor’s degree in Industrial Engineering from Jiangsu University of Science and Technology, where foundational principles of engineering and technology were mastered. Currently, Qi is pursuing a Master’s degree in Mechanical Engineering at Tongji University, one of China’s prestigious institutions, now in their third year of the program. This advanced education has allowed Qi to engage deeply with cutting-edge topics, particularly in computer vision and machine learning. Through rigorous coursework and research, Qi has developed expertise in areas such as pattern recognition, self-supervised learning, and fault diagnosis, equipping them with the skills necessary to tackle complex engineering problems and contribute significantly to both academic and industrial advancements.

Experience

Qi Liang has gained substantial experience through multiple research projects, totaling five completed or ongoing initiatives that emphasize practical applications of machine learning in semiconductor manufacturing. In addition to academic research, Qi has participated in three consultancy and industry-sponsored projects, bridging the gap between theoretical knowledge and real-world applications. Their collaborative efforts in research have led to valuable partnerships and a broader understanding of the industry’s challenges and needs. As the first to implement self-supervised learning techniques in few-shot learning tasks related to wafer map pattern recognition, Qi has showcased exceptional innovation. This unique approach has opened new avenues for cost-effective and efficient solutions within the semiconductor sector, positioning Qi as an emerging leader in their field.

Research Focus 

Qi Liang’s research focuses on the intersection of computer vision and machine learning, with a strong emphasis on pattern recognition, keypoint detection, and image retrieval. Specializing in self-supervised and multi-modal learning, Qi aims to develop innovative methodologies that minimize the reliance on labeled data while maximizing efficiency and applicability in industrial contexts. Current research projects explore dynamic adaptation mechanisms for few-shot learning, specifically tailored for wafer map pattern recognition in the semiconductor industry. Qi is also interested in signal processing and fault diagnosis, seeking to improve reliability and performance in manufacturing processes. This research direction not only contributes to the academic community but also addresses pressing industry challenges, promoting advancements in automation and smart manufacturing.

Publication Top Notes

  • Masked Autoencoder with Dynamic Multi-Loss Adaptation Mechanism for Few Shot Wafer Map Pattern Recognition 📄

Conclusion

Qi Liang’s innovative contributions to the field of mechanical engineering and computer vision make a strong case for the Excellence in Research award. The unique approach to self-supervised learning in few-shot learning for wafer map pattern recognition signifies both a breakthrough in methodology and practical application in the semiconductor industry. With a few strategic improvements, Qi has the potential to further amplify the impact of their research and cement their status as a leading researcher in their field.