Mr. Alessandro Ceccarelli | Prostheses and Exoskeletons | Best Researcher Award
Campus Bio-Medico University of Rome, Italy
Dr. Alessandro Ceccarelli is an Italian biomedical engineer specializing in the design and optimization of low-cost hand prostheses and exoskeletons. His research focuses on developing kinematic synthesis methods to replicate complex hand movements through simplified mechanical structures, utilizing additive manufacturing for cost-effective and customizable solutions. Currently a PhD candidate at the University Campus Bio-Medico of Rome, he is part of the CREO Lab under the supervision of Eng. Nevio Luigi Tagliamonte and Prof. Loredana Zollo. Dr. Ceccarelli has also been a visiting PhD student at ETH Zurich’s Sensory-Motor Systems Lab, working with Prof. Dr. Dr. h.c. Robert Riener. He has co-authored several publications in the field and has been actively involved in teaching and mentoring students in biomedical and industrial engineering.
Professional Profile
Education
Dr. Ceccarelli’s educational journey began at Liceo Scientifico G. Peano in Monterotondo, Rome, where he earned his Scientific High School Qualification with top honors in 2014. He then pursued a Bachelor’s degree in Medical Engineering at the University of Rome Tor Vergata, graduating in 2018. Continuing his studies, he completed a Master’s degree in Biomedical Engineering with a focus on Biorobotics and Bionics at the University Campus Bio-Medico of Rome in 2021, achieving the highest distinction. His thesis centered on the kinematic synthesis of a low-cost long finger exoskeleton for assisting activities of daily living. In November 2021, he commenced his PhD in Science and Engineering for Humans and the Environment at the same institution, where he currently serves as a research assistant. His academic path reflects a strong commitment to advancing the field of biomedical engineering, particularly in prosthetics and exoskeletons.
Work Experience
Dr. Ceccarelli has a diverse range of academic and research experience. Since October 2021, he has been a teaching assistant at the University Campus Bio-Medico of Rome, instructing courses in Applied Mechanics, Machine and Biomechanical System Construction, and Machines and Biomechanical Systems Mechanics. He has also co-supervised six Bachelor’s theses and five Master’s theses in Industrial and Biomedical Engineering, respectively, and mentored two internship students. In March 2024, he began lecturing at the Istituto Tecnico Superiore Meccatronico del Lazio in Frosinone, leading courses in Mechanical Design Fundamentals and Computer-Aided Engineering – CAD. Additionally, Dr. Ceccarelli has been involved in research projects such as 3D-AID and 3Daid++, focusing on the development of low-cost hand prostheses and exoskeletons. His work emphasizes the integration of kinematic optimization and additive manufacturing to enhance the functionality and accessibility of assistive devices.
Awards and Honors
Dr. Ceccarelli’s innovative contributions to biomedical engineering have been recognized through various accolades. Notably, in June 2021, he and his team secured first place in the IEEE RAS SofTech-Rehab School competition. Their project, a tendon-actuated exoskeleton for scoliosis rehabilitation, showcased advancements in soft robotics for therapeutic applications. This achievement underscores his commitment to developing assistive technologies that address complex medical challenges. His work continues to inspire and contribute to the evolving field of rehabilitation engineering.
Research Focus
Dr. Ceccarelli’s research is centered on the design and development of low-cost, customizable hand prostheses and exoskeletons aimed at assisting individuals in activities of daily living. He employs kinematic optimization techniques to replicate complex hand movements through simplified mechanical structures, facilitating the creation of functional assistive devices. A significant aspect of his work involves the integration of additive manufacturing technologies, such as 3D printing, to reduce production costs and enhance the customization of prosthetic devices. By focusing on both adult and pediatric populations, his research addresses a critical need for accessible and adaptable assistive technologies. Collaborating with institutions like the Istituto Eugenio Medea and Ospedale Pediatrico Bambino Gesù, Dr. Ceccarelli aims to bridge the gap between advanced engineering solutions and practical, real-world applications in healthcare.
Publication Top Notes
1. Analysis of Hand Intra-Finger Couplings During Flexion Movements in the Free Space
-
Authors: Martina Lapresa, Alessandro Ceccarelli, Fabrizio Taffoni, Nevio Luigi Tagliamonte, Loredana Zollo, Francesca Cordella
-
Published in: IEEE Access, 2023
-
Summary: This study investigates the intrinsic coupling mechanisms within the human hand during flexion movements. Understanding these couplings is crucial for designing prosthetic devices that accurately replicate natural hand movements. The research provides insights into the biomechanical constraints that must be considered in prosthetic design.
2. Mechanical Design of a Bioinspired and Customized Prosthetic Hand Finger Based on Six-Bar Linkage
-
Authors: Alessandro Ceccarelli, L. Nini, Fabrizio Taffoni, Loredana Zollo, Nevio Luigi Tagliamonte
-
Presented at: 10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, 2024
-
Summary: This paper presents the design of a prosthetic hand finger utilizing a six-bar linkage mechanism. The bioinspired approach aims to enhance the dexterity and functionality of prosthetic devices, providing users with more natural movement capabilities.ResearchGate
3.The Atlas of 1-DoF Finger Prostheses and Orthoses Based on Six-Bar Linkages
-
Authors: Alessandro Ceccarelli, Fabrizio Taffoni, Loredana Zollo, Nevio Luigi Tagliamonte
-
Journal: Mechanism and Machine Theory, Vol. 211, Article 106046, 2025
-
Summary: This work provides a comprehensive catalog (atlas) of single-degree-of-freedom prosthetic and orthotic finger designs utilizing six-bar linkages. The study aims to guide researchers and designers in selecting topologies based on application-specific motion and space constraints, with a focus on affordability and mechanical simplicity.
Conclusion
Alessandro Ceccarelli is a highly promising and capable researcher, with a strong foundation in biomedical and mechanical engineering, a clear focus on socially impactful innovation, and demonstrated expertise across technical, academic, and collaborative dimensions. While there is room to expand his international and publication footprint, his track record and trajectory absolutely justify serious consideration for a Best Researcher Award, especially in the field of assistive technologies, rehabilitation robotics, and biomedical device design.