Chih-Lyang Hwang | Electrical Engineering | Best Researcher Award

Prof. Chih-Lyang Hwang | Electrical Engineering | Best Researcher Award

National Taiwan University of Science and Technology | Taiwan

Dr. Chih-Lyang Hwang (SM’08) is a distinguished researcher and academic in the field of electrical and mechanical engineering, currently serving as a Research Fellow at the Intelligent Robot Center, National Taiwan University of Science and Technology (NTUST), Taipei, Taiwan. He earned his Ph.D. in Mechanical Engineering from Tatung Institute of Technology  and subsequently held professorial positions at Tatung Institute of Technology, Tamkang University, and NTUST. With an extensive academic career spanning over three decades, he has contributed significantly to robotics, fuzzy neural modeling, nonlinear control, and human–robot interaction. His research also encompasses distributed visual and wireless localization, UAV control, and emotion recognition. Dr. Hwang has been a Visiting Scholar at Georgia Institute of Technology and Auburn University, broadening his international academic collaborations. He has authored numerous influential journal and conference papers, amassing over 3,383 citations, 533 documents, and an H-index of 29. Recognized among the world’s top 2% scientists by Stanford University for multiple years, he has also received Excellent and Outstanding Research Awards from NTUST and 2024. His enduring contributions continue to advance intelligent robotics and control systems research globally.

Profile : Google Scholar

Featured Publications

Hwang, C.-L., Yang, C.-C., & Hung, J.-Y. (2017). Path tracking of an autonomous ground vehicle with different payloads by hierarchical improved fuzzy dynamic sliding-mode control. IEEE Transactions on Fuzzy Systems, 26(2), 899–914.

Hwang, C.-L., Jan, C., & Chen, Y.-H. (2001). Piezomechanics using intelligent variable-structure control. IEEE Transactions on Industrial Electronics, 48(1), 47–59.

Hwang, C.-L., Chang, L.-J., & Yu, Y.-S. (2007). Network-based fuzzy decentralized sliding-mode control for car-like mobile robots. IEEE Transactions on Industrial Electronics, 54(1), 574–585.

Hwang, C.-L., Chiang, C.-C., & Yeh, Y.-W. (2013). Adaptive fuzzy hierarchical sliding-mode control for the trajectory tracking of uncertain underactuated nonlinear dynamic systems. IEEE Transactions on Fuzzy Systems, 22(2), 286–299.

Hwang, C.-L. (2004). A novel Takagi–Sugeno-based robust adaptive fuzzy sliding-mode controller. IEEE Transactions on Fuzzy Systems, 12(5), 676–687

Sohail Ahmad Khan | Mathematics | Young Scientist Award

Dr. Sohail Ahmad Khan | Mathematics | Young Scientist Award

Quaid I Azam University Islamabad | Pakistan

Dr. Sohail Ahmad Khan is a distinguished researcher in Applied Mathematics with a strong background in Computational Fluid Dynamics, mathematical modeling, and heat and mass transfer. He earned his Ph.D., M.Phil., and M.Sc. in Applied Mathematics from Quaid-i-Azam University, Pakistan. His academic journey reflects a deep commitment to advancing analytical and numerical methods for nonlinear problems in Newtonian and non-Newtonian fluid mechanics.  Dr. Khan’s research primarily focuses on nanofluid flow, entropy generation, magnetohydrodynamics, and thermal analysis using advanced techniques such as the Homotopy Analysis Method, Finite Difference Method, and Keller Box Method. He actively serves as a reviewer for more than 120 high-impact journals and has received multiple international recognitions, including the World’s Top 2% Scientist ranking by Stanford University in 2022 and 2024. His dedication to mathematical innovation and interdisciplinary applications continues to influence modern engineering and physical sciences, contributing significantly to global research on nonlinear transport phenomena and energy optimization.

Profile : Google Scholar

Featured Publications

Hayat, T., Khan, S. A., Khan, M. I., & Alsaedi, A. (2019). Theoretical investigation of Ree–Eyring nanofluid flow with entropy optimization and Arrhenius activation energy between two rotating disks. Computer Methods and Programs in Biomedicine, 177, 57–68.

Khan, S. A., Hayat, T., Alsaedi, A., & Ahmad, B. (2021). Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis. Renewable and Sustainable Energy Reviews, 140, 110739.

Hayat, T., Khan, S. A., Khan, M. I., & Alsaedi, A. (2019). Optimizing the theoretical analysis of entropy generation in the flow of second grade nanofluid. Physica Scripta, 94(8), 085001.

Razaq, A., Hayat, T., Khan, S. A., & Momani, S. (2023). ATSS model based upon applications of Cattaneo-Christov thermal analysis for entropy optimized ternary nanomaterial flow with homogeneous-heterogeneous chemical reactions. Alexandria Engineering Journal, 79, 390–401.

Khan, S. A., Hayat, T., Khan, M. I., & Alsaedi, A. (2020). Salient features of Dufour and Soret effect in radiative MHD flow of viscous fluid by a rotating cone with entropy generation. International Journal of Hydrogen Energy, 45(28), 14552–14564.

Hussain Ali | Nanotechnology  | Best Researcher Award

Assoc. Prof. Dr. Hussain Ali | Nanotechnology | Best Researcher Award

School of Pharmaceutical Science & Technology Tianjin University  | China

Dr. Hussain Ali is an accomplished researcher and Associate Professor at Tianjin University, specializing in water and wastewater treatment, advanced oxidation processes, nanomaterials, and environmental remediation. He earned his Ph.D. in Environmental Engineering from Universiti Teknologi PETRONAS, Malaysia, following a strong academic foundation in engineering sciences. his work has attracted more than 2718 citations, reflecting a strong research impact with an h-index of 31. His academic journey includes serving as a postdoctoral researcher and later advancing to faculty positions, where he has contributed extensively to both teaching and mentoring graduate students. Dr. Ali’s research primarily focuses on photocatalysis, electrochemical treatment, hybrid treatment technologies, and sustainable materials for environmental applications.  He has also been granted multiple patents, secured national and international research funding, and actively serves as an editorial board member for reputed journals. With a global research outlook and dedication to sustainability, Dr. Ali continues to advance innovative solutions to address critical environmental challenges, contributing significantly to science and society.

Profile : Google Scholar 

Featured Publications

“Nano-and microparticulate drug carriers for targeting of the inflamed intestinal mucosa”

“Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease”

“Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of   inflammatory bowel diseases”

“Advances in orally-delivered pH-sensitive nanocarrier systems; an optimisti approach for the treatment of       inflammatory bowel disease”

“Poncirin attenuates CCL4-induced liver injury through inhibition of oxidative  stress”