Sudip Basack | Geotechnical Engineering | Outstanding Scientist Award

Prof. Dr. Sudip Basack | Geotechnical Engineering | Outstanding Scientist Award

Principal, Regent Education and Research Foundation, India

Prof. Dr. Sudip Basack is an accomplished academician with over 21 years of experience in teaching, research, and consultancy. Specializing in Geotechnical Engineering, Water Resources, and Civil Engineering, he has contributed significantly to international academic communities. Currently serving as an adjunct professor at Graphic Era University, he previously held leadership roles including Principal at Elitte College of Engineering and Professor & Head at Kaziranga University. Dr. Basack’s global research collaborations have taken him to leading institutions like the University of Wollongong and the University of Technology, Sydney. His work focuses on soil mechanics, ground improvement, and sustainable engineering solutions. In addition to his academic pursuits, Dr. Basack has supervised numerous M.Tech and PhD theses, authored several research papers, and delivered invited lectures worldwide.

Profile

Education

Dr. Sudip Basack holds a Ph.D. in Engineering from Jadavpur University, Kolkata (2000), with a specialization in Geotechnical Engineering. He completed his Master of Civil Engineering in 1996 (1st Class) at the same institution, followed by a Bachelor of Engineering (1st Class) from Bengal Engineering College, University of Calcutta in 1994. Throughout his academic journey, Dr. Basack has built a solid foundation in Civil and Geotechnical Engineering, focusing on soil mechanics, ground improvement, and water resources management. His education, supplemented by international exposure, has paved the way for his research contributions to be recognized globally. Additionally, he is a Chartered Engineer in India and a member of several prestigious professional bodies including the American Society of Civil Engineers, the Indian Geotechnical Society, and the Indian Society of Hydraulics.

Experience

With over 21 years of experience in academia and industry, Prof. Dr. Sudip Basack has held various esteemed positions in both teaching and research. Currently an adjunct professor at Graphic Era Deemed to be University, Dr. Basack has served as the Principal of Elitte College of Engineering and Head of the Civil Engineering Department at Kaziranga University. His academic journey spans institutions in India and abroad, including the University of Wollongong and University of Technology, Sydney, where he worked as a research academic and Endeavour Postdoctoral Fellow. In his roles, he has supervised numerous research students at M.Tech and Ph.D. levels, contributing to the successful completion of various R&D projects funded by the Government of India. Prof. Basack’s expertise spans soil mechanics, groundwater hydrology, and railway geomechanics, and he has gained recognition for his leadership and research achievements.

Awards and Honors

Prof. Dr. Sudip Basack has received numerous accolades throughout his career. He was honored with the 2018 Albert Nelson Marquis Lifetime Achievement Award by Marquis Who’s Who and received the Reviewer of Excellence Award by Computers and Geotechnics in 2017. His contributions to research and education earned him the Best Paper Award at the National Conference on ‘Development in Engineering Education and Practices’ in 2020 and the Best Poster Presentation Award at the International Workshop on Sustainable Civil Infrastructure Development in 2019. Prof. Basack has also been recognized as an Outstanding Reviewer by multiple journals, including the International Journal of Geomechanics and Computers and Geotechnics. Other honors include the Endeavour Post-Doctoral Research Fellowship by the Australian Government, International Travel Support from India’s Department of Science and Technology, and an Early Career Research Award from AICTE. His work has been cited globally, further solidifying his academic reputation.

Research Focus

Prof. Dr. Sudip Basack’s research focuses on Geotechnical Engineering, Soil Mechanics, and Water Resources. His primary areas of interest include ground improvement, railway geomechanics, and the application of stone columns for stabilizing soft ground. Dr. Basack’s research examines the behavior of geotechnical structures under various loading conditions, with a particular emphasis on cyclic loading and soil-structure interaction. He is also involved in studying groundwater hydraulics and environmental engineering solutions for coastal aquifers and groundwater management. His work on the performance of soil reinforcement techniques, including stone columns and piles, has contributed to better practices in construction and infrastructure development. He has published extensively in high-impact international journals, with a focus on solving practical challenges in civil engineering. Through collaborations with international institutions, he continues to lead innovative research initiatives aimed at improving sustainable engineering practices and advancing geotechnical engineering knowledge globally.

Publication Top Notes

  1. Numerical solution of stone column–improved soft soil considering arching, clogging, and smear effects 🏗️
  2. Engineering properties of marine clays from the eastern coast of India 🌊
  3. Modeling the performance of stone column–reinforced soft ground under static and cyclic loads ⚙️
  4. Modeling the stone column behavior in soft ground with special emphasis on lateral deformation 🏝️
  5. Active earth pressure on translating rigid retaining structures considering soil arching effect 🌍
  6. Measured and predicted response of pile groups in soft clay subjected to cyclic lateral loading 🏗️
  7. Performance of laterally loaded piles considering soil and interface parameters 🔧
  8. Numerical solution of single pile subjected to torsional cyclic load 🔄
  9. Stone column–stabilized soft-soil performance influenced by clogging and lateral deformation: Laboratory and numerical evaluation 🧪
  10. Influence of relative pile-soil stiffness and load eccentricity on single pile response in sand under lateral cyclic loading 🏖️

 

 

Nathanaël Savalle | Geotechnics | Young Scientist Award

Assist. Prof. Dr. Nathanaël Savalle | Geotechnics | Young Scientist Award 

Lecturer, Clermont Auvergne University, Clermont Auvergne INP, CNRS, Pascal Institute, France

Dr. Nathanaël Savalle, born on December 16, 1993, is a French post-doctoral researcher at the Universidade do Minho, Portugal. He specializes in civil engineering, focusing on the seismic behavior of masonry and dry stone structures. With fluency in English, French, German, and Portuguese, Nathanaël has contributed to the development of experimental and numerical methodologies for assessing the performance of historical structures under seismic loads. He works under the supervision of Pr. Paulo B. Lourenço at the Institute for Sustainability and Innovation in Structural Engineering (ISISE). He has collaborated extensively on various high-impact projects related to masonry structures, including shaking table and dynamic tests. His dedication to structural mechanics and his multi-disciplinary expertise make him a valuable contributor to his field. Nathanaël’s research interests also include geotechnics, discrete element modeling, and limit analysis.

Profile

Orcid

Strengths for the Award

  1. Expertise in Innovative Research Areas: Nathanaël Savalle has demonstrated expertise in niche areas of civil engineering, particularly in the seismic behavior of masonry structures, dry stone retaining walls, and geotechnics. His research on dry-stone structures and their dynamic and seismic responses stands out, which is highly relevant for contemporary challenges in structural engineering, especially in the preservation of historical buildings and resilience against earthquakes.
  2. Significant Research Contributions: He has contributed to numerous peer-reviewed journal articles, including publications in high-impact journals like Engineering Structures and Construction and Building Materials. His work covers both experimental and numerical aspects of structural behavior, including discrete element modeling (DEM), shaking table tests, and limit analysis. This breadth of expertise, paired with practical testing (e.g., shaking table tests), is an asset to advancing the understanding of masonry and geotechnics under seismic loads.
  3. Multidisciplinary Approach: His research utilizes a combination of advanced modeling techniques (such as DEM and Finite Element Method) and practical experimental validation (e.g., shaking table and rocking tests). This multidisciplinary approach strengthens the reliability and applicability of his findings, which are valuable not only in structural engineering but also in fields like geotechnics and seismic risk assessment.
  4. International and Collaborative Research: Nathanaël’s involvement in research at the University of Minho, Portugal, and collaborations across several institutions, including the University of Lyon, École Centrale de Lyon, and others, shows his ability to work in international teams. His participation in European research projects (e.g., ERC-funded projects) highlights his contribution to the scientific community at a global level.
  5. Teaching and Mentoring: He has shown strong teaching and mentoring abilities, guiding students at the undergraduate, master’s, and Ph.D. levels. This is an important indicator of his commitment to knowledge transfer and fostering the next generation of researchers and engineers.
  6. Awards and Recognition: Nathanaël has received multiple awards, such as the 1st place at the IMC10 student competition and the jury’s congratulations for his engineering degree, which further solidify his standing as an outstanding young researcher in his field.

Areas for Improvement

  1. Wider Research Dissemination: While Nathanaël’s work has been published in high-impact journals, there may be potential to increase the dissemination of his research to broader audiences outside academia, such as in professional engineering networks, policy-making circles, and industry collaborations. Engaging more with industry applications and challenges could help bridge the gap between academic research and real-world implementation.
  2. Broader Interdisciplinary Collaboration: Though Nathanaël’s work is already multidisciplinary, expanding his research collaborations to include experts in related fields, such as urban planning, heritage preservation, or computational modeling in architecture, could enhance the applicability of his work in other domains, leading to more innovative solutions.
  3. Public Outreach and Communication: Given the technical nature of his research, there may be an opportunity for Nathanaël to increase his involvement in public outreach or public lectures to make complex engineering concepts more accessible to non-expert audiences. This could also help in highlighting the importance of preserving historical structures and enhancing building resilience against earthquakes, making his research more impactful on a societal level.

Education

Nathanaël Savalle completed his Ph.D. in Civil Engineering at the University of Lyon (2016-2019), where he focused on the seismic behavior of slope dry stone retaining walls. He was supervised by Professors Éric Vincens and Stéphane Hans, receiving the prestigious MESR grant for his research. He also holds a Research Master in Civil Engineering (MEGA) from the University of Lyon, with a grade of 15.5/20, where he studied topics such as viscoelasticity and structural dynamics. In addition, Nathanaël earned an Engineering degree from École Centrale de Lyon in 2016, ranking 1st in his class (40 students) with a specialization in civil engineering. His undergraduate studies covered a broad range of topics, including reinforced concrete, soils mechanics, structural dynamics, acoustics, and renewable energies. Nathanaël’s strong academic foundation in both practical and theoretical aspects of civil engineering underpins his current research expertise.

Experience

Dr. Nathanaël Savalle has extensive experience in the field of civil engineering, particularly in the seismic behavior of masonry and dry stone structures. Since 2020, he has been a post-doctoral researcher at the University of Minho, Portugal, working on the ERC-funded Stand4Heritage project. His research focuses on understanding the seismic behavior of historical buildings, specifically masonry arches, through laboratory shaking table tests, dynamic simulations, and material characterization. Nathanaël’s Ph.D. research (2016-2019) at École Centrale de Lyon addressed the seismic response of dry stone retaining walls, where he applied discrete element methods (DEM) and conducted large-scale experimental shaking table tests. He has also worked on various research projects, including those on soil mechanics, hydraulic properties, and structural behavior. His experience includes supervising doctoral students, contributing to international collaborations, and publishing numerous high-impact articles in peer-reviewed journals.

Awards and Honors

Dr. Nathanaël Savalle has received multiple honors and awards in recognition of his outstanding contributions to civil engineering research. In 2018, he was awarded the first prize at the IMC10 student competition in Milan for his innovative design of a masonry shear wall with enhanced resistance. Nathanaël also received the prestigious Jury’s Congratulations upon completing his Engineer’s degree from École Centrale de Lyon in 2016, where he ranked 1st out of 40 students. His research excellence was further acknowledged when he was awarded the MESR Ph.D. grant from the ED MEGA doctoral school for his doctoral studies on dry-stone structure behavior. Nathanaël’s achievements demonstrate his dedication to advancing the field of structural engineering, particularly in the assessment of historical and masonry structures. His research contributions continue to have a lasting impact on the academic community and industry practices.

Research Focus

Dr. Nathanaël Savalle’s primary research focus lies in understanding and improving the seismic behavior of masonry and dry stone structures, which are critical components of historical and cultural heritage. His work includes conducting both experimental and numerical studies on the dynamic and static behavior of dry-joint masonry walls, retaining systems, and masonry arches under seismic loading. He employs a combination of advanced testing techniques, such as shaking table tests, dynamic simulations, and discrete element methods (DEM), to assess the performance of these structures during earthquakes. Nathanaël’s research aims to provide accurate modeling and assessment tools for seismic design, offering guidelines for the protection of historical buildings. He is also engaged in the development of limit analysis methods and homogenization techniques to improve the efficiency and precision of structural assessments. His interdisciplinary approach spans structural dynamics, geotechnics, and material characterization, making his research highly relevant for modern engineering challenges in heritage conservation.

Publication Top Notes

  1. “Experimental characterisation of dry-joint masonry structures: Interface stiffness and interface damping” 🏛️ by Georgios Vlachakis, Carla Colombo, Anastasios I. Giouvanidis, Nathanaël Savalle, Paulo B. Lourenço 🏗️ Construction and Building Materials (2023)
  2. “Static and seismic design of Dry Stone Retaining Walls (DSRWs) following Eurocode standards” 🧱 by Nathanaël Savalle, Christine Monchal, Eric Vincens, Sten Forcioli, Paulo B. Lourenço 🏛️ Engineering Structures (2023)
  3. “A concurrent micro/macro FE-model optimized with a limit analysis tool for the assessment of dry-joint masonry structures” 🏛️ by Nathanaël Savalle 🧱 International Journal for Multiscale Computational Engineering (2022)
  4. “Dynamic behaviour of drystone retaining walls: shaking table scaled-down tests” 🏛️ by N. Savalle, J. Blanc-Gonnet, E. Vincens, S. Hans ⚒️ European Journal of Environmental and Civil Engineering (2022)
  5. “Dynamic Numerical Simulations of Dry-Stone Retaining Walls: Identification of the Seismic Behaviour Factor” 🧱 by Nathanaël Savalle, Eric Vincens, Stéphane Hans, Paulo B. Lourenço 🌍 Geosciences (2022)
  6. “Joint Stiffness Influence on the First-Order Seismic Capacity of Dry-Joint Masonry Structures: Numerical DEM Investigations” 🏛️ by Nathanaël Savalle, Paulo B. Lourenço, Gabriele Milani 🔧 Applied Sciences (2022)
  7. “Experimental and numerical studies on scaled-down dry-joint retaining walls: Pseudo-static approach to quantify the resistance of a dry-joint brick retaining wall” 🧱 by Nathanaël Savalle, Éric Vincens, Stéphane Hans 🔬 Bulletin of Earthquake Engineering (2020)
  8. “Pseudo-static scaled-down experiments on dry stone retaining walls: Preliminary implications for the seismic design” 🧱 by Savalle, N., Vincens, E., Hans, S. ⚒️ Engineering Structures (2018)

Conclusion

Nathanaël Savalle is highly deserving of the Research for Young Scientist Award. His solid foundation in civil engineering, particularly in the seismic analysis of dry-stone structures, and his ability to combine experimental techniques with advanced computational models, make him a valuable contributor to the field. His research has significant potential for real-world applications in structural resilience and historical preservation. With continued collaboration, broader dissemination, and enhanced outreach efforts, Nathanaël is well-positioned to make even greater contributions to his field and society as a whole.