Dingqin Hu | Chemistry and Materials Science | Research Excellence Award

Dr. Dingqin Hu | Chemistry and Materials Science | Research Excellence Award

 City University of Hong Kong | China

Dingqin Hu is an early-career materials and energy researcher specializing in organic photovoltaics and sustainable optoelectronic materials, with research outputs. He received his PhD in Energy Power Engineering from Chongqing University after completing MSc and BSc degrees in Materials Science and Engineering at Sichuan University. His professional experience spans assistant research fellow service at the Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, and current postdoctoral research at City University of Hong Kong, where his work focuses on scalable fabrication, morphology control, and efficiency–stability trade-offs in organic solar cells. His research interests include non-fullerene acceptors, polymer and small-molecule photovoltaics, ink-state aggregation control, and large-area device manufacturing. He has authored multiple highly cited papers in top journals such as Advanced Materials, Energy & Environmental Science, Joule, and Advanced Science, alongside several national and international patents. His achievements have been recognized through young researcher exchange awards, excellent employee and CPC honors, and first-prize academic paper awards at regional science and technology conferences. Overall, his work contributes significantly to advancing efficient, stable, and industrially viable organic photovoltaic technologies.

Citation Metrics (Google Scholar)

2500
2000
600
200
0

Citations
2177

Documents
58
h-index
21

Citations

Documents

h-index


View Google Scholar Profile

Featured Publications

All-Small-Molecule Organic Solar Cells with an Ordered Liquid Crystalline Donor
H. Chen, D. Hu, Q. Yang, J. Gao, J. Fu, K. Yang, H. He, S. Chen, Z. Kan, et al.
Joule, 2019.

15% Efficiency All-Small-Molecule Organic Solar Cells Enabled by a Fullerene Additive
D. Hu, Q. Yang, H. Chen, F. Wobben, V. M. Le Corre, R. Singh, T. Liu, et al.
Energy & Environmental Science, 2020.

Additive-Induced Miscibility Regulation and Hierarchical Morphology Enable 17.5% Binary Organic Solar Cells
J. Lv, H. Tang, J. Huang, C. Yan, K. Liu, Q. Yang, D. Hu, et al.
Energy & Environmental Science, 2021.

Delicate Morphology Control Triggers 14.7% Efficiency All-Small-Molecule Organic Solar Cells
H. Tang, H. Chen, C. Yan, J. Huang, P. W. K. Fong, J. Lv, D. Hu, et al.
Advanced Energy Materials, 2020.

15% Efficiency All-Small-Molecule Organic Solar Cells Achieved by a Locally Asymmetric F, Cl Disubstitution Strategy
D. Hu, Q. Yang, Y. Zheng, H. Tang, S. Chung, R. Singh, J. Lv, et al.
Advanced Science, 2021.