Xiaomin Kang | Energy storage | Best Researcher Award

Assist. Prof. Dr. Xiaomin Kang | Energy storage | Best Researcher Award

University of South China, China

Prof. Xiaomin Kang is the Dean of the School of Mechanical Engineering at the University of South China. He holds a Ph.D. in Material Science and Engineering from Southwest Jiaotong University. Prof. Kang has been leading cutting-edge research in energy conversion and storage, with a particular focus on electrochemical reactions such as oxygen evolution/reduction and carbon dioxide conversion. He has actively contributed to numerous national and international research programs and is a core participant in the Shenzhen Innovative Research Team Program and other prestigious initiatives. Prof. Kang has published over 30 research papers and holds 5 patents, contributing significantly to the development of next-generation energy materials. His work is crucial for advancing clean energy solutions, particularly through electrochemical and material science innovations.

Profile

Education

Prof. Xiaomin Kang completed his undergraduate studies in Material Science and Engineering at Southwest Jiaotong University in 2011. He continued his academic journey at the same institution, earning a Ph.D. in 2017. His doctoral research focused on the development of advanced materials for energy applications, contributing to advancements in the field of electrochemical energy storage. After completing his Ph.D., he worked as a postdoctoral researcher in the group of Prof. Luo Jinglli, a Fellow of the Canadian Academy of Engineering. This experience allowed him to further specialize in energy storage and conversion devices, particularly in the areas of oxygen evolution/reduction reactions and CO2 electroreduction. His educational background laid the foundation for his career as a researcher, educator, and leader in the field of mechanical and energy engineering.

Experience

Prof. Xiaomin Kang has a diverse and accomplished career in the field of energy storage and conversion technologies. He began his professional journey as a postdoctoral researcher at Shenzhen University in 2017, specializing in material science and energy applications. In 2020, he became an associate research fellow at Shenzhen University, where he contributed to numerous research projects on energy storage materials and electrochemical processes. In 2022, Prof. Kang was appointed as an associate professor and principal investigator at the University of South China. He currently leads various research projects, including a National Natural Science Foundation of China-funded project and an innovative research program in Shenzhen. His work is instrumental in advancing energy storage technologies and contributing to sustainable energy solutions. Prof. Kang’s leadership and research have significantly impacted the development of energy materials and fuel cells, garnering both national and international recognition.

Research Focus

Prof. Xiaomin Kang’s research focuses on the development of advanced materials for energy storage and conversion, particularly in the fields of electrochemical energy storage, hydrogen production, and carbon dioxide reduction. His primary research interests include exploring the oxygen evolution/reduction reactions (OER/ORR) and the electrochemical conversion of CO2 at room temperature. Prof. Kang is dedicated to developing novel catalysts and materials that can efficiently store and convert energy, contributing to sustainable energy solutions. His research also explores the integration of phase change materials for thermal management in lithium-ion batteries. His work aims to address global challenges related to clean energy production, storage, and utilization. He is involved in several high-impact research programs, focusing on hydrogen energy, fuel cell materials, and the development of graphene-based anti-corrosion materials. Prof. Kang’s innovative research has the potential to revolutionize energy technologies, making a significant impact on environmental sustainability and energy efficiency.

Publication Top Notes

  • “Comprehensive Application of Phase Change Materials in Lithium‐Ion Battery Thermal Management: From Single Cooling to Coupled Systems” βš‘πŸ”‹
  • “NiFe-LDH nanosheets with high activity in three dimensions on NiFe foam electrode for water oxidation” πŸ’§βš™οΈ
  • “On the role of Zn and Fe doping in nitrogen-carbon electrocatalysts for oxygen reduction” πŸ§ͺπŸ”‹
  • “An Insight in the role of dopamine acted in the electroless deposition process using atomic force microscopy based single molecule force spectroscopy” πŸ”¬πŸ§ 
  • “Capturing critical gem-diol intermediates and hydride transfer for anodic hydrogen production from 5-hydroxymethylfurfural” πŸš€πŸŒ
  • “Copper-based metal-organic frameworks for electrochemical reduction of CO2” 🌱⚑
  • “N and S dual-coordinated Fe single-atoms in hierarchically porous hollow nanocarbon for efficient oxygen reduction” πŸŒΏβš™οΈ
  • “Surface Spin Enhanced High Stable NiCo2S4 for Energy-Saving Production of H2 from Water/Methanol Coelectrolysis” πŸ”‹πŸ’¨
  • “Co7Fe3 Nanoparticles Confined in N-Doped Carbon Nanocubes for Highly Efficient, Rechargeable Zinc-Air Batteries” βš‘πŸ”‹
  • “Contact Characteristics and Tribological Properties of the Weaving Surface of Mn-Cu and Fe-Zn Damping Alloys” πŸ”§πŸ› οΈ
  • “Coordination Effect-Promoted Durable Ni(OH)2 for Energy-Saving Hydrogen Evolution from Water/Methanol Co-Electrocatalysis” πŸ”‹πŸ’‘
  • “Densely packed ultrafine SnO2 nanoparticles grown on carbon cloth for selective CO2 reduction to formate” πŸŒπŸ”‹
  • “ZnS anchored on porous N, S-codoped carbon as superior oxygen reduction reaction electrocatalysts for Al-air batteries” πŸ§ͺ⚑
  • “Copper-cobalt-nickel oxide nanowire arrays on copper foams as self-standing anode materials for lithium-ion batteries” πŸ”‹βš‘

 

 

 

Bibhudatta Mishra | Renewable Energy Award | Best Researcher Award

Mr Bibhudatta Mishra | Renewable Energy | Best Researcher Award

Mr Bibhudatta Mishra , NIT Rourkela, India

Bibhudatta Mishra is an accomplished academic and researcher in Electrical Engineering, currently pursuing his Ph.D. at the National Institute of Technology, Rourkela. With expertise in MATLAB/Simulink, Pspice software, and optimization techniques, he has a robust academic background, including an M.Tech in Power System Engineering and a B.Tech in Electrical Engineering. Bibhudatta has a passion for teaching and research, having served as an Assistant Professor and Contractual Lecturer at various prestigious institutions. His contributions to the field are recognized through multiple awards and publications, reflecting his commitment to advancing knowledge in power systems and microgrids. πŸŒŸπŸ“š

Education

Bibhudatta Mishra’s educational journey is marked by excellence and dedication. He is currently pursuing a Ph.D. in Electrical Engineering at the National Institute of Technology, Rourkela, where he has achieved a CGPA of 8.39/10. Prior to this, he earned an M.Tech in Power System Engineering from Veer Surendra Sai University of Technology, Burla, with a stellar CGPA of 9.04/10. His undergraduate studies were completed at Biju Pattnaik University of Technology, Rourkela, where he obtained a B.Tech in Electrical Engineering with a CGPA of 7.83/10. His academic foundation was laid at Bhadrak Junior College and Panchayat High School, Bhadrak, where he excelled in science and matriculation. πŸŽ“πŸ”§

Experience

Bibhudatta Mishra’s professional experience spans several years in academia. He served as an Assistant Professor at Silicon Institute of Technology, Sambalpur, from December 2016 to July 2019, where he taught various B.Tech theory and laboratory classes, along with taking on administrative and academic responsibilities. Prior to this, he was a Contractual Lecturer at Veer Surendra Sai University of Technology, Burla, from July 2016 to December 2016, where he taught core theory subjects and laboratory classes for B.Tech and M.Tech students. His roles in these institutions have significantly contributed to his expertise in electrical engineering education and research. πŸ“˜πŸ«

Awards and Honors

Bibhudatta Mishra has received several awards and honors in recognition of his academic and research achievements. He was awarded the Best Paper Award for his presentation at the IEMRE-2022 conference. His academic pursuits have been supported by MHRD Scholarships during his Ph.D. and M.Tech studies. Additionally, he has successfully qualified in the GATE exam multiple times, in the years 2013, 2015, 2017, and 2019. These accolades highlight his dedication to his field and his continuous strive for excellence in electrical engineering research and education. πŸ†πŸŽ–οΈ

Research Focus

Bibhudatta Mishra’s research focuses on decentralized control strategies for parallel operating inverters in AC microgrids. His doctoral research, titled “Decentralized Control Strategy for Parallel Operating Inverters in an AC Microgrid,” delves into innovative control mechanisms to enhance the performance and stability of microgrids. His M.Tech project involved a comparative study of different tuning algorithms applied to a multi-area thermal system. Additionally, his B.Tech project centered around the design of a three-phase distribution transformer. His research interests encompass advanced power system controls and optimization techniques. πŸ”¬πŸ’‘

Publication Top Notes

“A Modified Droop-based Decentralized Control Strategy for Accurate Power Sharing in a PV-based Islanded AC Microgrid”

“Enhancement of Power Sharing in an Islanded AC Microgrid Using Modified Reverse Droop Control Strategy”

“A Modified Droop-based Decentralized Control Strategy for an Islanded AC Microgrid”

B. Mishra, R. Pradhan and M. Pattnaik, “A Simple and Novel Tuning Technique for Load Frequency Control in a Multi-Area Microgrid System,”

“Geometrical Interpretation of Incremental Conductance MPPT Algorithm for a Stand-alone Photovoltaic System”