Oritonda Muribwathoho | material science | Excellence in Research

Ms. Oritonda Muribwathoho | material science | Excellence in Research

Academic Lecturer and researcher,  CPUT,  South Africa

Oritonda Muribwathoho is a dedicated researcher and academic lecturer at the Cape Peninsula University of Technology (CPUT), specializing in advanced materials and manufacturing techniques. With a Master of Engineering (Summa Cum Laude) from CPUT, Oritonda has built a strong reputation for his impactful contributions to academia, particularly in friction stir welding and composite fabrication. As an educator, Oritonda’s innovative teaching methods have improved student learning outcomes, while his research has advanced the understanding of material processing. His published works and ongoing PhD research on Aluminium Metal Matrix Composites further demonstrate his expertise. With an h-index of 4 and an i10-index of 2, Oritonda’s research is widely acknowledged in the field. His goal is to push the boundaries of materials engineering to offer innovative solutions to the challenges of modern manufacturing.

Profile

Education 

Oritonda Muribwathoho holds a Master of Engineering (Summa Cum Laude) from the Cape Peninsula University of Technology (CPUT), where he developed a deep interest in advanced materials and manufacturing processes. His academic journey has been marked by excellence and a commitment to research, positioning him as a thought leader in materials science and engineering. Oritonda’s focus has always been on pushing the boundaries of innovation, particularly in friction stir welding and composite fabrication techniques, areas in which he has made significant contributions. His outstanding academic performance has earned him numerous accolades, with his thesis on materials and manufacturing techniques being widely recognized for its quality and potential impact. Currently, Oritonda is pursuing his PhD in the development of Aluminium Metal Matrix Composites, solidifying his expertise in the field and expanding his research horizons.

Research Focus 

Oritonda Muribwathoho’s research focuses primarily on the development of advanced materials, particularly Metal Matrix Composites (MMCs), and the improvement of manufacturing processes such as Friction Stir Welding (FSW) and Friction Stir Processing (FSP). His PhD thesis explores the fabrication of Aluminium Metal Matrix Composites, emphasizing the development of materials suitable for high-performance applications, such as marine and aerospace industries. Oritonda’s work in friction stir processing aims to optimize the mechanical properties and microstructure of metal joints, particularly dissimilar metal combinations, through multi-pass processing. His research has resulted in several influential publications, advancing the understanding of tool geometry, process parameters, and the influence of materials on the final properties of the joint. By addressing real-world challenges in material strength, corrosion resistance, and manufacturing efficiency, Oritonda’s work holds the potential to revolutionize industries that rely on composite materials and advanced manufacturing techniques.

Publications

Effect of tool geometry on microstructure and mechanical properties of submerged friction stir processed AA6082/AA8011 joints 🔧🔬

  1. The microstructure and mechanical properties of the friction stir processed TIG-welded aerospace dissimilar aluminium alloys ✈️🔩
  2. Impact of multi-pass friction stir processing on microhardness of AA1050/AA6082 dissimilar joints ⚙️🔧
  3. Microstructural and mechanical properties of submerged multi-pass friction stir processed AA6082/AA8011 TIG-welded joint 🔥🛠️
  4. Metal Matrix Composite Fabricated with 5000 Series Marine Grades of Aluminium Using FSP Technique: State of the Art Review 🌊🔬
  5. Metal Matrix Composite Developed with Marine Grades: A Review 🌍💡
  6. An Analysis Comparing the Taguchi Method for Optimizing the Process Parameters of AA5083/Silicon Carbide and AA5083/Coal Composites That Are Fabricated via Friction Stir Processing ⚙️🔬
  7. The mechanical properties of AA6082/AA1050 dissimilar joints subjected to multi-pass friction stir processing ⚒️🔩
  8. The effect of material position of multi-pass friction stir processing on friction stir welded AA1050/AA6082 dissimilar joints 🛠️🌀
  9. Review on Multi-Pass Friction Stir Processing of Aluminium Alloys 📚🔧
  10. Optimization and Regression Analysis of Friction Stir Processing Parameters of AA5083/Coal Composites for Marine Applications 🌊⚙️
  11. Optimization of FSP parameters in fabricating AA5083/Coal composites using Taguchi method 🧪🔧
  12. The Influence of Material Position towards the Bending Strength of the 4 Pass AA1050/AA6082 and AA6082/AA1050 FSPed Joints 🔩💪
  13. Characterization of multi-pass friction stir processed AA1050 and AA6082 dissimilar joint 🏗️🔬

Oritonda Muribwathoho | material science, FSW, FSP | Excellence in Research

Ms.Oritonda Muribwathoho | material science, FSW, FSP | Excellence in Research

Academic Lecturer and researcher, Cape Peninsula University of Technology,South Africa

Muribwathoho Oritonda is a dedicated researcher and academic lecturer at Cape Peninsula University of Technology (CPUT). With a passion for advanced materials and manufacturing techniques, Oritonda earned a Master of Engineering (Summa Cum Laude) from CPUT. Specializing in friction stir welding and composite fabrication, they have made substantial contributions to academia and industry with impactful research and publications. With an h-index of 4 and i10-index of 2, Oritonda’s work has been well-recognized and frequently cited in the field. They are also known for their innovative teaching approaches, positively influencing student learning outcomes. Oritonda is currently pursuing a PhD, focusing on composite fabrication, with particular emphasis on Aluminium Metal Matrix Composites. Despite no industry partnerships or patents, their academic work remains pivotal in advancing the understanding and application of modern manufacturing techniques.

Profile

Orcid

Scopus

Google Scholar 

Education 

Muribwathoho Oritonda holds a Master of Engineering degree (Summa Cum Laude) from Cape Peninsula University of Technology (CPUT), specializing in advanced materials and manufacturing techniques. This achievement highlights not only Oritonda’s exceptional academic aptitude but also their dedication to innovation in the field. Their undergraduate studies provided a foundation in mechanical engineering, leading them to explore advanced manufacturing methods like friction stir welding and composite materials. Oritonda’s academic journey reflects a deep commitment to both learning and research, with an emphasis on producing high-quality, impactful work. Their ongoing doctoral research focuses on developing Aluminium Metal Matrix Composites, contributing significantly to the field of materials engineering. As a dedicated academic, Oritonda’s educational achievements and ongoing research trajectory position them as an emerging expert in the field of advanced manufacturing and materials science.

Experience 

Oritonda Muribwathoho has extensive experience as both a researcher and an academic lecturer at Cape Peninsula University of Technology (CPUT). Having contributed to academia through numerous high-impact publications, Oritonda has developed expertise in advanced materials, particularly in friction stir welding (FSW) and composite fabrication. They have taught and mentored students in mechanical engineering, utilizing innovative teaching approaches that enhance student engagement and learning outcomes. Beyond the classroom, Oritonda’s research has focused on improving materials and manufacturing processes, with an emphasis on the development of Aluminium Metal Matrix Composites. Although they have yet to engage in consultancy or industry collaborations, their research publications in peer-reviewed journals indicate a growing academic influence. Their expertise is recognized globally, with several of their papers being cited in major engineering and materials science journals. Oritonda continues to push the boundaries of manufacturing technologies through ongoing academic research.

Research Focus 

Muribwathoho Oritonda’s research focuses primarily on advanced materials and manufacturing techniques, with a particular emphasis on friction stir welding (FSW) and composite fabrication. Their doctoral research, centered on Aluminium Metal Matrix Composites, aims to develop high-performance materials with applications in aerospace, marine, and automotive industries. By optimizing the FSW process, Oritonda seeks to improve the mechanical properties and microstructure of aluminum alloys, enhancing their suitability for various industrial applications. Their studies involve detailed analysis of material behavior under different processing conditions, such as multi-pass FSW and the incorporation of composite reinforcements like silicon carbide and coal. This research also explores the use of Taguchi methods to optimize processing parameters for fabricating advanced composites. Oritonda’s work contributes to the growing field of sustainable and efficient manufacturing, focusing on the development of materials that meet the stringent demands of modern engineering applications.

Publications

  • Effect of tool geometry on microstructure and mechanical properties of submerged friction stir processed AA6082/AA8011 joints 📘 (2021)
  • The microstructure and mechanical properties of the friction stir processed TIG-welded aerospace dissimilar aluminium alloys 📘 (2021)
  • Impact of multi-pass friction stir processing on microhardness of AA1050/AA6082 dissimilar joints 📘 (2021)
  • Microstructural and mechanical properties of submerged multi-pass friction stir processed AA6082/AA8011 TIG-welded joint 📘 (2021)
  • Metal Matrix Composite Fabricated with 5000 Series Marine Grades of Aluminium Using FSP Technique: State of the Art Review 📘 (2022)
  • Metal Matrix Composite Developed with Marine Grades: A Review 📘 (2023)
  • An Analysis Comparing the Taguchi Method for Optimizing the Process Parameters of AA5083/Silicon Carbide and AA5083/Coal Composites That Are Fabricated via Friction Stir Processing 📘 (2024)
  • The mechanical properties of AA6082/AA1050 dissimilar joints subjected to multi-pass friction stir processing 📘 (2021)
  • The effect of material position of multi-pass friction stir processing on friction stir welded AA1050/AA6082 dissimilar joints 📘 (2021)
  • Review on Multi-Pass Friction Stir Processing of Aluminium Alloys 📘 (2020)
  • Optimization and Regression Analysis of Friction Stir Processing Parameters of AA5083/Coal Composites for Marine Applications 📘 (2024)
  • Optimization of FSP parameters in fabricating AA5083/Coal composites using Taguchi method 📘 (2024)
  • The Influence of Material Position towards the Bending Strength of the 4 Pass AA1050/AA6082 and AA6082/AA1050 FSPed Joints 📘 (2022)
  • Characterization of multi-pass friction stir processed AA1050 and AA6082 dissimilar joint 📘 (2021)