Huidong Tong | Structural Engineering | Best Researcher Award

Dr. Huidong Tong | Structural Engineering | Best Researcher Award

Doctor student, Tongji university, China

Dr. Huidong Tong is currently a doctoral student at Tongji University, China, specializing in geotechnical and rock mechanics engineering. His research is centered around the mechanical behavior of rocks under multifactorial conditions, particularly the effects of thermal coupling, chemical corrosion, and long-term creep. With a keen interest in constitutive modeling, Dr. Tong has contributed to the development of innovative elastic-plastic and creep models that have advanced the understanding of rock deformation and failure mechanisms. He has published several peer-reviewed articles in prestigious journals such as Energy, Powder Technology, and Materials. In addition to his academic research, he is a named inventor on a patent involving intelligent digital building systems based on 6G digital twins. Dr. Tong’s work not only deepens theoretical knowledge but also supports practical engineering applications, particularly in underground construction, energy extraction, and hazard prevention. His dedication positions him as an emerging expert in his field.

Professional Profile

🔹 Education

Dr. Huidong Tong is currently pursuing his Doctor of Philosophy (PhD) in Civil Engineering at Tongji University, one of China’s leading institutions for science and engineering. His doctoral research focuses on rock mechanics, with a particular emphasis on the environmental factors—such as temperature and chemical corrosion—that influence the strength and deformation properties of rock materials. Prior to his PhD studies, Dr. Tong completed his Bachelor’s and Master’s degrees in Civil or Geological Engineering (institutional details not provided), where he laid the foundation in mechanics, materials science, and geotechnical analysis. During his academic journey, he has consistently demonstrated academic excellence and a strong aptitude for both theoretical modeling and experimental work. He has also received support from nationally funded projects like those under the National Natural Science Foundation of China, underscoring his academic promise and potential. His education is complemented by interdisciplinary exposure to materials science and computational mechanics.

🔹 Experience

Dr. Huidong Tong’s experience is rooted in both academic research and applied engineering science. As a doctoral researcher at Tongji University, he has been deeply involved in high-level scientific investigations into rock behavior under thermal-mechanical-chemical conditions. He has served as a principal or co-investigator in projects funded by the National Natural Science Foundation of China (Grant Nos. 51978401, 42107168), which has allowed him to explore damage modeling, true triaxial testing, and digital simulation of geo-materials. In parallel, Dr. Tong has collaborated with international scholars and contributed to several joint publications, showing his ability to work across disciplinary and institutional boundaries. His experience also extends to innovation, where he co-authored a patent on digital twin systems for intelligent buildings. His skills include constitutive modeling, finite element analysis, high-temperature testing, and multiphysical coupling analysis. With several SCI-indexed publications, he has built a strong profile as a researcher bridging theoretical advances with real-world geotechnical challenges.

🔹 Research Focus 

Dr. Huidong Tong’s research primarily investigates the transient and time-dependent mechanical properties of rocks under the influence of multi-physical environmental conditions, including thermal effects, chemical corrosion, and mechanical loading. His work emphasizes understanding both macroscopic mechanical behavior and microscopic damage evolution, enabling the development of sophisticated constitutive models. His current projects focus on modeling true triaxial creep behavior and coupled thermo-mechanical damage mechanisms, which are essential for underground energy storage, deep excavation stability, and geothermal systems. He integrates experimental testing with advanced numerical simulation, using models such as elasto-plastic and viscoelastic frameworks to characterize rock deformation. Another facet of his work includes hydrate-bearing and cemented sand behavior, essential for applications in offshore geotechnics and gas hydrate exploitation. Dr. Tong’s research aims to enhance predictive accuracy for rock mass behavior, contributing to engineering safety, design resilience, and infrastructure longevity under challenging environmental conditions.

🔍 Publication Top Notes

1. Chen, S., Tong, H.*, Du, X., & Chen, Q. (2025).

Title: A new elastic-plastic constitutive model for the coupled thermo-mechanical damaged rock considering dilatancy equation
Journal: Powder Technology
DOI: 10.1016/j.powtec.2025.121415
ISSN: 0032-5910

Summary:
This study introduces an elastic-plastic constitutive model that captures the effects of thermal-mechanical coupling in rocks, incorporating a novel dilatancy equation. The model accounts for damage evolution under elevated temperatures and triaxial loading, providing more accurate predictions of post-peak behavior. The theoretical framework was validated against experimental data and shown to enhance the simulation of deep underground rock deformation scenarios, improving the understanding of stress redistribution in rock masses.

2. Tong, H., Chen, Y., Du, X., Chen, S., Pan, Y., Wang, S., … & Fernandez-Steeger, T. M. (2024).

Title: A state-dependent elasto-plastic model for hydrate-bearing cemented sand considering damage and cementation effects
Journal: Materials, 17(5), 972
DOI: 10.3390/ma17050972

Summary:
This paper presents a state-dependent constitutive model for hydrate-bearing cemented sands, factoring in cementation degradation and particle interaction effects. The research is critical for offshore and arctic engineering, where hydrate dissociation and mechanical disturbance can destabilize foundations. The model was verified using lab tests and implemented numerically, highlighting its utility for risk assessment and ground response prediction during gas hydrate extraction or thermal stimulation.

3. Tong, H., Chen, Y., Du, X., Xiao, P., Wang, S., Dong, Y., … & Long, Z. (2023).

Title: A true triaxial creep constitutive model of rock considering the coupled thermo-mechanical damage
Journal: Energy, 285, 129397
DOI: 10.1016/j.energy.2023.129397

Summary:
In this publication, Dr. Tong develops a true triaxial creep model for rock under thermo-mechanical loading, considering anisotropic damage and long-term deformation behavior. This model improves the understanding of rock mechanics in high-temperature environments such as geothermal reservoirs, deep tunnels, and nuclear waste storage sites. The results showed high agreement with experimental data, making it suitable for engineering applications involving sustained thermal and stress exposure.

🏁 Conclusion

The Best Researcher Award in Structural Engineering serves as a prestigious platform to recognize individuals whose scholarly work has made significant advancements in understanding, modeling, and improving structural systems. In an era where infrastructure faces multifaceted challenges from environmental degradation, climate change, and evolving societal needs, the role of innovative research in structural engineering becomes more vital than ever. By honoring researchers like Dr. Huidong Tong—who exemplify excellence in experimental and theoretical modeling under complex environmental conditions—this award not only celebrates individual brilliance but also inspires a culture of academic and professional innovation. Through contributions such as damage constitutive modeling, thermo-mechanical coupling, and true triaxial testing, awardees influence the future of construction safety, sustainability, and resilience. This recognition is more than an accolade; it is an affirmation of dedication, impact, and forward-thinking vision in the engineering world. We welcome applications from global researchers committed to shaping the structural future.

Juras Skardžius | Mechanics Engineering | Best Researcher Award

Dr. Juras Skardžius | Mechanics Engineering | Best Researcher Award

Juras Skardžius is an accomplished engineer with experience in the automotive industry. Specializing in MetrologX (CMM), Computer-Aided Design (CAD), SolidWorks/Pro-Engineer, reverse engineering, and APQP packages, Juras has a strong ability to turn complex designs into tangible parts. With certifications in AIAG Quality Core Tools, IATF Automotive standards, and ISO 9001 and 14001, Juras brings expertise in quality control, documentation, and feasibility studies. A proactive and continuously growing professional, he has contributed extensively to automotive engineering through both hands-on experience and research.

Profile

Orcid

Education

Juras Skardžius holds both a Bachelor’s (2012-2016) and a Master’s (2022-2024) degree in Transport Technology Science (Automobile Engineering) from the prestigious Vilnius Gediminas Technical University. His academic background provides him with in-depth knowledge of engineering principles and advanced techniques used in automotive technology. Throughout his studies, Juras focused on modernizing automotive manufacturing processes, including implementing sensor technologies to improve efficiency. His academic career has laid the foundation for his ongoing contributions to the automotive sector, integrating cutting-edge research with practical experience.

Experience

Juras Skardžius has a diverse career in the automotive sector, working for several companies where he honed his skills in project engineering, design, and quality control. He is currently employed at UAB Stansefabrikken Automotive, where he is responsible for new project documentation preparation, CMM programming, and product implementation. His experience also spans roles at UAB Baltexim as a designer and at UAB Forveda as a Service and Aftersale Manager. Juras’s hands-on roles in manufacturing processes and his ability to manage important clients has given him extensive exposure to various facets of the industry.

Research Focus

Juras Skardžius’s research focus lies in the modernization of automotive manufacturing processes. He has developed innovative methods for real-time part quality monitoring using stamping force in progressive stamping and has worked on tool modernization using sensor technologies. His research aims to optimize manufacturing efficiency, improve product quality, and reduce costs in automotive production. Juras is particularly interested in the integration of sensor technologies like eddy current and load sensors into stamping processes to enhance production accuracy and reliability. His work bridges the gap between theory and practice in automotive engineering.

Publication Top Notes

  1. Alternative Real-Time Part Quality Monitoring Method by Using Stamping Force in Progressive Stamping Process
    Journal of Manufacturing and Materials Processing 📚🔧

  2. Progressive Tool Modernization Using Sensor Technology in Automotive Parts Manufacturing
    TRANSBALTICA XIV: Transportation Science and Technology 🛠️⚙️

  3. Modernization of the Stamping Process Using Eddy Current and Load Sensors in the Manufacturing of Automotive Parts
    Eksploatacja i Niezawodność – Maintenance and Reliability 🏭📊

 

 

Majed Almubarak | Geomechanics | Best Researcher Award

Mr Majed Almubarak | Geomechanics | Best Researcher Award

PhD Student, Massachusetts Institute of Technology, United States

Majed AlMubarak is a dedicated PhD candidate in Petroleum Engineering at Texas A&M University, where he maintains a perfect GPA of 4.0. With a rich academic background that includes a Master’s degree from MIT and a Bachelor’s degree from Texas A&M, Majed has consistently demonstrated excellence in his studies. He has significant experience in both industry and research, having worked as a reservoir engineer at Saudi Aramco and contributed to various high-impact research projects. Majed is passionate about advancing energy technologies and sustainable practices within the petroleum industry.

Profile

Google Scholar

Strengths for the Award

  1. Academic Excellence:
    • Majed has demonstrated exceptional academic performance throughout his educational journey, achieving a 4.0 GPA in his PhD program and a 4.9 GPA in his Master’s degree at MIT. His summa cum laude distinction during his undergraduate studies further showcases his commitment to excellence.
  2. Diverse Research Experience:
    • His extensive research background spans multiple prestigious institutions, including Texas A&M University and MIT. He has participated in various impactful projects related to petroleum engineering, rock mechanics, and geothermal systems, indicating a breadth of knowledge and adaptability in different research environments.
  3. Innovative Contributions:
    • Majed’s research on CO2 injection challenges, electro-hydraulic fracturing, and the development of novel fracturing fluids demonstrates his capacity for innovation in addressing complex industry challenges. His work on smart underground space exploration also reflects a forward-thinking approach to integrating technology and research.
  4. Publication Record:
    • With multiple published works and citations in prominent journals and conferences, Majed has established himself as a thought leader in his field. His involvement in various projects that contribute to the understanding of fluid dynamics and rock interactions enhances his visibility and credibility as a researcher.
  5. Industry Experience:
    • His practical experience as a reservoir engineer at Saudi Aramco equips him with a strong understanding of real-world applications, enhancing his research’s relevance and applicability to the petroleum industry.

Areas for Improvement

  1. Networking and Collaboration:
    • While Majed has a strong foundation, increasing his engagement in interdisciplinary collaborations could enrich his research perspectives and lead to novel findings. Actively participating in more workshops and conferences can enhance his professional network.
  2. Broader Impact of Research:
    • Focusing on how his research can be translated into broader societal benefits, such as environmental sustainability and energy efficiency, could enhance the impact of his work and appeal to a wider audience.
  3. Leadership Roles:
    • Taking on leadership roles in research projects or student organizations could further develop his management and mentorship skills, positioning him as a leader in the academic community.

Education

Majed AlMubarak is currently pursuing a PhD in Petroleum Engineering at Texas A&M University, expected to graduate in 2026 with a 4.0 GPA. He holds a Master of Science in Civil and Environmental Engineering from MIT, where he achieved an impressive GPA of 4.9. Majed also earned his Bachelor of Science in Petroleum Engineering from Texas A&M University in 2019, graduating summa cum laude with a GPA of 3.91. His educational journey reflects a strong foundation in engineering principles, enhanced by rigorous coursework and research experiences that have shaped his expertise in geomechanics and reservoir engineering.

Experience

Majed AlMubarak has gained valuable industry experience as a Reservoir Engineer at Saudi Aramco’s EXPEC Advanced Research Center. During his tenure from 2019 to 2020, he led projects focusing on CO2 enhanced oil recovery and experimental work addressing CO2 injection challenges. His hands-on approach involved utilizing advanced monitoring techniques and conducting laboratory experiments to improve recovery efficiency. In addition to his industry experience, Majed has served as a Graduate Research Assistant at Texas A&M University and MIT, where he engaged in significant research projects, including acid fracturing geomechanics and electro-hydraulic fracturing for geothermal systems. His diverse experience positions him as a well-rounded professional in the field of petroleum engineering.

Awards and Honors

Majed AlMubarak has received numerous accolades throughout his academic career, underscoring his dedication and excellence in engineering. He was a finalist in the Best Young Professional SPE Endogenous Contest in 2020 and received the Distinguished Student Award from the Dwight Look College of Engineering in 2019. His commitment to research was recognized when he secured first place in the SPE Petroleum Engineering Student Paper Contest in 2018. Furthermore, Majed has consistently achieved academic excellence, earning a place on the President’s List and the Dean’s List from 2015 to 2019. His undergraduate studies were fully sponsored by Saudi Aramco Oil Company, reflecting his potential and the value he brings to the engineering community.

Research Focus

Majed AlMubarak’s research focuses on advancing the understanding of geomechanics and reservoir engineering within the petroleum sector. His current projects at Texas A&M University involve evaluating acid fracturing geomechanics in carbonate rocks and assessing fracture conductivity in the Austin Chalk Formation. He explores innovative solutions for CO2 enhanced oil recovery and examines the efficiency of matrix acid stimulation techniques. His previous work at MIT concentrated on electro-hydraulic fracturing and the effects of various parameters on rock testing, further enriching his expertise. Majed is dedicated to addressing challenges in the energy industry, particularly in improving recovery techniques and promoting sustainable practices through advanced engineering solutions.

Publication Top Notes

  • Investigation of acid-induced emulsion and asphaltene precipitation in low permeability carbonate reservoirs.
  • A collective clay stabilizers review.
  • Insights on potential formation damage mechanisms associated with hydraulic fracturing.
  • Recent advances in waterless fracturing fluids: A review.
  • Chelating agent for uniform filter cake removal in horizontal and multilateral wells: laboratory analysis and formation damage diagnosis.
  • Influence of zirconium crosslinker chemical structure and polymer choice on the performance of crosslinked fracturing fluids.
  • Zirconium crosslinkers: Understanding performance variations in crosslinked fracturing fluids.
  • Enhancing foam stability through a combination of surfactant and nanoparticles.
  • A study on the adsorption behavior of different surfactants in carbonate using different techniques.
  • Turning the most abundant form of trash worldwide into effective corrosion inhibitors for applications in the oil and gas industry.

Conclusion

Majed AlMubarak is a highly qualified candidate for the Best Researcher Award, showcasing exceptional academic achievements, a diverse research portfolio, and significant contributions to the field of petroleum engineering. His strengths in innovation, publication, and industry experience solidify his position as a leading researcher. By focusing on enhancing his networking, broadening the societal impact of his research, and developing leadership skills, Majed can further elevate his profile and influence in the academic and professional communities. His potential for continued excellence makes him a deserving candidate for this prestigious recognition.