Xiaoyi Hou | New Energy Storage Materials | Best Researcher Award 

Mr. Xiaoyi Hou | New energy storage materials | Best Researcher Award 

Associate professor, Qinghai Normal University, China

Xiaoyi Hou is a dedicated researcher in the field of new energy storage technologies, with a strong background in condensed matter physics. A graduate of Lanzhou University, he has cultivated a specialized research portfolio focused on lithium-ion batteries, supercapacitors, and lithium-sulfur batteries. Hou’s work integrates fundamental science with practical applications, contributing significantly to the advancement of next-generation energy storage devices. In recognition of his impactful research, he was selected in 2019 as one of the top talents in Qinghai Province under the prestigious “Thousand Talents Plan for High-end Innovative Talents.” His scholarly contributions are evident in numerous publications in high-impact journals such as the Chemical Engineering Journal, Journal of Alloys and Compounds, and Materials Letters. Hou continues to drive innovations in materials science and electrochemical energy storage systems, making him a valuable figure in the field of sustainable energy technologies.

Professional Profile

Education

Xiaoyi Hou completed his academic training in condensed matter physics at Lanzhou University, a leading institution known for its strengths in physical sciences and materials research. His education provided him with a solid foundation in the principles of quantum mechanics, materials properties, and solid-state physics. During his academic tenure, he developed a particular interest in the application of physical principles to real-world energy challenges. His coursework and research projects exposed him to advanced topics in materials science, thermodynamics, and nanotechnology, which later became central to his career in energy storage. The comprehensive and interdisciplinary nature of his education at Lanzhou University equipped him with both theoretical knowledge and practical skills in materials characterization, device fabrication, and electrochemical testing. This educational background laid the groundwork for his transition into high-impact research in new energy materials and positioned him well for selection into competitive research talent programs in China.

Experience 

Xiaoyi Hou has accumulated significant experience in both academic and applied research on energy storage technologies. After graduating from Lanzhou University, he engaged in extensive laboratory and project-based research focused on the development of novel electrode materials and device architectures for next-generation energy storage systems. His experience spans lithium-ion batteries, lithium-sulfur batteries, and supercapacitors, where he has contributed to material synthesis, performance optimization, and device integration. He has worked on interdisciplinary teams involving physicists, chemists, and engineers, facilitating a holistic approach to problem-solving in energy systems. Hou has also led and participated in several provincial and national research projects, driving innovation in energy-efficient technologies. His research outcomes have been published in leading journals and have contributed to the scientific understanding and commercial potential of energy storage materials. His work continues to bridge the gap between fundamental materials science and functional energy devices.

Research Focus 

Xiaoyi Hou’s research focuses on the design and development of advanced materials for energy storage applications, with an emphasis on high-performance lithium-ion batteries, lithium-sulfur batteries, and supercapacitors. His work aims to address critical challenges such as energy density, cycle life, safety, and cost-effectiveness. He investigates novel electrode and electrolyte materials using nanostructuring, surface modification, and hybridization strategies to improve electrochemical performance. Hou also explores the mechanisms of charge storage and degradation processes at the molecular level, combining experimental techniques with theoretical modeling. His interdisciplinary approach bridges physics, materials science, and electrochemistry, enabling the creation of innovative storage devices with enhanced functionality. By focusing on scalable and sustainable materials, his research contributes to the advancement of clean energy technologies, addressing both environmental concerns and growing energy demands. Hou’s work continues to impact both academic inquiry and practical device innovation in the global energy storage sector

Publication Top Notes

Building Rapid Electron/Ion Dual Channels in Mesoporous CoSe₂/CNTs Composites for Advanced Sodium‑Ion Storage

  • Authors: Xiaoyi Hou, Dengdeng Ai, Jianglong Kang, Qirongxing Shen, Minmin Li & Jingyu Qi

  • Journal: Electrochimica Acta 530 (May 2025)

  • Summary: This work presents a 3‑dimensional mesoporous CoSe₂–carbon‑nanotube hybrid using an MOF‑derived template. The structure provides intertwined electron and Na⁺ conduction channels, resulting in significantly improved sodium-storage metrics—higher capacity, enhanced rate performance, and longer cycling life compared to conventional CoSe₂ systems sciencedirect.com+7researchgate.net+7pubs.rsc.org+7.

Boosting Li⁺ Transport Kinetics and Structural Stability of Co‑Free LiNi₀.₉Mn₀.₁₋ₓAlₓO₂ Cathode Materials

  • Authors: (not listed; placeholder “…, …”)

  • Journal: Journal of Electroanalytical Chemistry, 2025

  • Summary: Reported is a Co‑free layered cathode LiNi₀.₉Mn₀.₁₋ₓAlₓO₂ synthesized via organic‑amine co‑precipitation. Partial Al doping enhances lithium‑ion diffusion and stabilizes the layered structure under cycling conditions, yielding improved rate capability and structural integrity.

Improving the Electrochemical Performance of Ag‑Doped Ni‑Rich Li(Ni₀.₈₈Co₀.₀₉Al₀.₀₃)₁₋ₓO₂ Layered Cathode Material

  • Authors: (not listed; placeholder “…, …”)

  • Journal: Applied Physics A: Materials Science & Processing, 2025

  • Summary: Silver‑doped Li(Ni₀.₈₈Co₀.₀₉Al₀.₀₃)O₂ is produced through solid‑state synthesis. It achieves a high initial discharge capacity (~223 mAh g⁻¹ at 0.2 C) and ~95% retention (~178 mAh g⁻¹) after 100 cycles. Ag doping stabilizes the structure, mitigating capacity fade.

A Tailored High‑Nickel Cobalt‑Free Na‑Doped LiNi₀.₉Mn₀.₀₆Al₀.₀₄O₂ Cathode for Superior Lithium Storage

  • Authors: (not listed; placeholder “…, …”)

  • Journal: Physical Chemistry Chemical Physics, June 25 2025

  • Summary: This Na-doped, high-Ni, Co-free cathode material fine-tunes the lattice of LiNi₀.₉Mn₀.₀₆Al₀.₀₄O₂ to enhance Li⁺ transport kinetics and structural robustness. Results show high capacity and excellent cycling stability, attributing improvements to optimized lattice spacing and diffusion pathways.

Conclusion

Xiaoyi Hou emerges as a distinguished researcher in the realm of advanced energy storage systems, combining a solid academic foundation with innovative scientific contributions. His expertise in condensed matter physics, acquired from Lanzhou University, has laid the groundwork for his impactful work on lithium-ion batteries, lithium-sulfur batteries, and supercapacitors. His selection for the Qinghai Province “Thousand Talents Plan for High-end Innovative Talents” in 2019 affirms his stature as a leading innovator in the field. Through numerous publications in prestigious journals and his active role in high-level research initiatives, Hou has demonstrated a consistent commitment to addressing the global demand for efficient and sustainable energy solutions. His integrated approach to materials design, device engineering, and performance enhancement continues to contribute meaningfully to the development of next-generation energy storage technologies. With a clear research vision and proven excellence, Xiaoyi Hou stands out as a key figure in China’s scientific and technological advancement.

 

 

Luke Saunders | Electrochemistry | Best Researcher Award

Dr. Luke Saunders | Electrochemistry | Best Researcher Award

Dr., Newcastle university, United Kingdom

Luke Saunders is a dynamic researcher specializing in electrochemistry, electrical machines, and battery technology. Currently serving as a Post-Doctoral Research Associate at Newcastle University, Luke is contributing to the Future Electrical Machines and Manufacturing Hub, focusing on advancing electric motor performance and manufacturing innovation. His career reflects a blend of academic rigor and industrial relevance, with previous impactful roles at The Faraday Institution and Heraeus Quartz UK. He has worked extensively on lithium-ion battery degradation and amperometric gas sensor technologies. Luke’s research integrates experimental work with computational analysis, aiming to accelerate the adoption of next-generation technologies. He has published multiple papers in internationally recognized journals and has presented his work at prominent conferences. Beyond his research, Luke is actively involved in mentoring PhD students, supporting undergraduates, and contributing to university-level ethical committees. He is also pursuing his HEA teaching fellowship, demonstrating his commitment to excellence in both research and education.

Publication Profile

🎓 Education 

Luke Saunders completed his PhD at Newcastle University, focusing on amperometric gas sensors in collaboration with Alphasense Sensor Technologies. His doctoral research emphasized the diffusion behavior of volatile organic compounds through specially designed semi-permeable membranes, combining both laboratory experiments and computational analysis. This industry-sponsored project allowed him to present regularly to senior stakeholders, bridging the gap between academic inquiry and real-world applications. Luke’s solid academic foundation in electrochemistry, sensor technology, and materials science underpins his versatile research portfolio. While the specific undergraduate and master’s education details are not provided, his progression into multi-disciplinary postdoctoral roles and a significant industrial engineering position reflect a strong educational background in chemical or electrical engineering. His current pursuit of the HEA teaching fellowship further highlights his ongoing commitment to both educational development and research excellence, aiming to contribute comprehensively to academia as a researcher, mentor, and future educator.

💼 Experience

Luke Saunders brings a rich blend of academic and industrial experience across multiple high-impact projects. At Newcastle University (2023–2026), he contributes to electric motor innovation as part of the Future Electrical Machines and Manufacturing Hub, collaborating internationally and mentoring young researchers. Previously, at the Faraday Institution (2020–2021), he investigated lithium-ion battery degradation, mastering electrochemical techniques and complex data analysis. From 2022 to 2023, he worked as a Production Engineer at Heraeus Quartz UK, managing process improvement projects for high-grade quartz manufacturing, delivering engineering solutions, and supporting health and safety initiatives. His PhD research (2014–2020) explored amperometric gas sensors, conducted in collaboration with Alphasense Sensor Technologies. Luke has consistently demonstrated leadership, teamwork, and technical expertise, contributing to both fundamental science and industrial applications. His experience encompasses project management, cross-functional collaborations, mentoring PhD and undergraduate students, and presenting at international conferences, positioning him as a well-rounded and impactful researcher.

🔬 Research Focus

Luke Saunders’ research primarily focuses on electrochemistry, energy storage systems, and the performance of advanced electrical machines. His recent work targets the development of novel electric motor designs with enhanced efficiency, durability, and manufacturability, contributing to the global push for sustainable transportation solutions. His earlier research delved into the degradation mechanisms of lithium-ion batteries, where he utilized advanced electrochemical impedance spectroscopy and large-scale data interpretation to uncover failure patterns. Luke’s PhD work in amperometric gas sensors emphasized improving sensor selectivity and response times using tailored semi-permeable membranes. His cross-disciplinary expertise allows him to navigate between materials science, chemical engineering, and electrical engineering, enabling innovative solutions to industry-relevant problems. Through active collaborations with industrial partners and multinational research hubs, Luke aims to accelerate the translation of laboratory discoveries into practical applications. His future research interests include green manufacturing processes, next-generation energy systems, and enhancing the sustainability of electrochemical technologies.

📚 Publication Top Notes

1. Evaluating Single-Crystal and Polycrystalline NMC811 Electrodes in Lithium-Ion Cells via Non-Destructive EIS Alone

Journal: Journal of Applied Electrochemistry
Publication Date: September 2022
DOI: 10.1007/s10800-022-01713-x
Authors: Luke Saunders, Jiabin Wang, Ulrich Stimming
Summary:
This study evaluates the performance of NMC811 electrodes in lithium-ion batteries using non-destructive electrochemical impedance spectroscopy (EIS). The work compares single-crystal and polycrystalline structures to understand how microstructural differences influence battery life and degradation. The research highlights the benefits of using non-invasive diagnostic tools for assessing battery health, which can improve battery management systems and enhance operational safety.

2. Differentiating Degradation Characteristics in Lithium-Ion Cells

Journal: Journal of The Electrochemical Society
Publication Date: November 2021
DOI: 10.1149/1945-7111/ac3851
Authors: Luke Saunders, Jiabin Wang, Ulrich Stimming
Summary:
This paper investigates the distinct degradation pathways in lithium-ion cells under various operational conditions. By employing electrochemical techniques, the study differentiates the key factors contributing to capacity fade and impedance rise. The findings offer valuable insights for improving battery longevity and inform the design of more robust battery systems for future applications.

Conclusion

Luke Saunders demonstrates strong potential and is highly suitable for a Best Researcher Award at an early to mid-career level. His multidisciplinary research, industrial relevance, leadership in mentoring, and significant collaborative efforts position him as a valuable researcher with impactful contributions. To elevate his candidacy to a truly outstanding level, focusing on independent grant acquisition, completing teaching credentials, and further expanding his international research footprint would be beneficial.