Ebrahim Babaei | Electrical Engineering | Best Researcher Award

Prof Dr Ebrahim Babaei | Electrical Engineering | Best Researcher Award

Professor, University of Tabriz, Iran

Prof. Ebrahim Babaei is a prominent academic and researcher in electrical engineering, recognized as one of the top 1% of scientists globally since 2015. He is a professor at the University of Tabriz, Iran, where he specializes in power engineering and power electronics. With over 17 years of teaching and research experience, he has held leadership roles, including Editor-in-Chief of the Journal of Electrical Engineering. He has contributed significantly to the field through numerous publications, conferences, and collaborations, also serving as an associate editor for various prestigious journals. Prof. Babaei’s expertise spans power electronic converters, renewable energy, and smart grids, earning him international recognition for his research excellence and impact.

Profile

Google Scholar

Strengths for the Award

Prof. Ebrahim Babaei is an outstanding researcher with remarkable contributions to the field of electrical engineering, specifically in power electronics and renewable energy systems. Several key strengths support his candidacy for the Best Researcher Award:

  1. Top One Percent of World Scientists and Academics
    Prof. Babaei has been consistently recognized as being in the top 1% of the world’s scientists and academics (since 2015), according to Thomson Reuters (ISI). This recognition is a clear indicator of his global impact and the significance of his research.
  2. Extensive Research Contributions
    His research primarily focuses on power electronic converters, including matrix converters, multilevel inverters, Z-source inverters, resonance converters, and related fields in power systems. His work has resulted in numerous influential papers, many of which are highly cited in top-tier journals such as IEEE Transactions on Power Electronics, IEEE Transactions on Industrial Electronics, and Energy Conversion and Management.

    • Highly Cited Papers: Some of Prof. Babaei’s papers, like those on cascade multilevel converter topologies and reduced switch inverter designs, have over 700 citations, demonstrating their importance in the field.
    • Innovative Topologies: His development of novel inverter topologies and multilevel converter designs has advanced the design and efficiency of power electronics, which is critical for applications in renewable energy systems, electric vehicles, and more.
  3. Awards and Recognition
    Prof. Babaei has received numerous prestigious awards and honors, including:

    • Best Paper Awards from renowned conferences such as IEEE International Conference on Power Electronics, Drive Systems, and Technologies (PEDSTC).
    • Outstanding Reviewer Awards for IEEE Transactions on Power Electronics.
    • Multiple Distinguished Researcher Awards at his home institution, University of Tabriz.
    • Recognition from international bodies for his contributions to the field of electrical engineering and technology development.
  4. Leadership in Research and Editorial Roles
    • Editor-in-Chief of the Journal of Electrical Engineering at the University of Tabriz.
    • Associate Editor for several prestigious IEEE journals and international publications, showing his leadership in shaping the direction of research in his field.
    • Extensive collaborations with international research institutions, notably as a visiting professor at universities in Italy and Cyprus.
  5. Research Impact and Practical Applications
    Prof. Babaei’s work is not only theoretical but also has significant practical applications, especially in renewable energy systems, grid integration, and power quality improvement. For instance, his work on dynamic voltage restorers and voltage disturbance mitigation has applications in industrial and utility systems.
  6. Collaborative Research Environment
    Prof. Babaei’s collaborative spirit is reflected in his extensive international network and joint research projects with leading institutions worldwide. This not only strengthens his own work but also contributes to global advancements in power engineering.

Areas for Improvement

While Prof. Babaei’s profile is exceptionally strong, there are a few areas where he could potentially focus on to further enhance his research and contributions:

  1. Expansion of Research into Emerging Technologies
    Prof. Babaei has already worked on a broad range of power electronics applications. However, exploring emerging fields such as Artificial Intelligence (AI) for power system optimization, smart grids, and advanced energy storage systems could provide fresh opportunities for research that align with current and future industry needs.
  2. Broader Impact on Industry
    While Prof. Babaei’s research is academically rigorous and widely cited, increasing its impact on industry applications, especially in terms of commercializing innovative technologies like smart inverters or energy storage solutions, could further elevate his influence. Collaboration with industry partners and developing scalable technologies could bridge the gap between research and real-world applications.
  3. Increased Interdisciplinary Collaboration
    There is an opportunity to further broaden the scope of his research by collaborating with other interdisciplinary areas, such as IoT in power systems, cybersecurity in electrical grids, and sustainable energy solutions. This would open up new avenues of research with societal and environmental benefits.

Education

Prof. Babaei’s educational journey includes a B.Sc. in Electronics Engineering from the University of Tabriz (1993), followed by an M.Sc. in Electrical Engineering (2001), and a Ph.D. in Electrical Engineering (2007) from the same institution. His academic growth reflects a commitment to advancing electrical engineering, particularly in the field of power electronics. His Ph.D. focused on innovative control methods for matrix converters, setting the foundation for his future groundbreaking research in power systems and converters. His education has been complemented by various honorary distinctions, including top honors in each degree he earned.

Experience

Prof. Babaei’s academic career began in 2007 as an Assistant Professor in Electrical Engineering at the University of Tabriz. By 2011, he was promoted to Associate Professor, and in 2015, he became a Full Professor. His leadership extends beyond teaching, as he served as Head of the Department of Power Engineering (2010–2015) and managed various university committees. Prof. Babaei’s experience also includes international academic collaborations, notably as a Visiting Professor at the University of L’Aquila, Italy (2016), and Near East University, Cyprus (2017–Present). His contributions to scientific committees and journal editorial roles highlight his dedication to advancing the field on a global scale.

Awards and Honors

Prof. Babaei has received numerous prestigious awards throughout his career. He has been consistently recognized as one of the world’s top 1% scientists by Thomson Reuters (ISI) from 2015–2023. His accolades include the Best Paper Award at international conferences such as ICEMS (2007) and IEEE RTUCON (2018, 2021), as well as the Highly Cited Researcher Award (2016). In 2021, he was awarded Distinguished Researcher honors from both the University of Tabriz and Near East University, Cyprus. His recognition extends to the national level, where he has been named Distinguished Researcher of Iran in the field of Engineering by the Ministry of Science in 2022.

Research Focus

Prof. Babaei’s research focuses on the analysis, modeling, design, and control of power electronic converters, including dc/dc, ac/ac, and multilevel inverters. He is particularly interested in matrix converters, resonance converters, and renewable energy systems. His work also spans the design and control of FACTS devices and power system dynamics. Prof. Babaei’s innovations in reducing the number of components in power electronic circuits have been groundbreaking. His interdisciplinary research also extends to renewable energy integration and improving power system stability, making him a key contributor to advancements in smart grids and sustainable energy systems.

Publications

  1. A Cascade Multilevel Converter Topology with Reduced Number of Switches
  2. New Cascaded Multilevel Inverter Topology with Minimum Number of Switches
  3. A New Multilevel Converter Topology with Reduced Number of Power Electronic Components
  4. A Single-Phase Cascaded Multilevel Inverter Based on a New Basic Unit with Reduced Number of Power Switches
  5. A Generalized Cascaded Multilevel Inverter Using Series Connection of Submultilevel Inverters
  6. Hybrid Multilevel Inverter Using Switched Capacitor Units
  7. A New General Topology for Cascaded Multilevel Inverters with Reduced Number of Components Based on Developed H-Bridge
  8. Reduction of DC Voltage Sources and Switches in Asymmetrical Multilevel Converters Using a Novel Topology
  9. A New Topology of Cascaded Multilevel Converters with Reduced Number of Components for High-Voltage Applications
  10. Cascaded Multilevel Inverter with Series Connection of Novel H-Bridge Basic Units

Conclusion

Prof. Ebrahim Babaei has demonstrated exceptional leadership in research and made groundbreaking contributions to the fields of power electronics and electrical engineering. His consistent recognition in the top 1% of scientists worldwide, combined with his significant academic and practical contributions, solidifies his credentials for the Best Researcher Award. The breadth and depth of his work in innovative power conversion technologies, renewable energy integration, and power system optimization are highly impactful. Given his outstanding achievements, continued excellence, and potential for future growth, Prof. Babaei is more than deserving of this prestigious recognition. With his strong publication record, numerous awards, and contributions to the global scientific community, he stands as an exemplary candidate for the Best Researcher Award.

 

 

Gokhan Basar | Mechanical Engineering | Best Researcher Award

Dr. Gokhan Basar | Mechanical Engineering | Best Researcher Award

Research Assistant at Industrial Engineering, Turkey

Dr. Gokhan Basar is a dedicated researcher and assistant professor in the Department of Industrial Engineering at Osmaniye Korkut Ata University, Turkey. Born on January 1, 1989, in Tarsus, Turkey, he has developed a strong academic and professional foundation in mechanical engineering. Dr. Basar holds a PhD in Mechanical Engineering, specializing in the production of reinforced aluminum matrix composites. He has contributed significantly to the field through his research on friction stir welding and optimization techniques, establishing himself as an expert in machinability and mechanical properties of materials. His commitment to advancing engineering knowledge is evident in his numerous publications and active participation in national and international conferences.

Profile:

Google Scholar

Strengths for the Award:

  1. Diverse Research Areas: Dr. Basar has an extensive range of research interests including Friction Stir Welding, machinability of materials, and optimization techniques. This diversity reflects a strong capability to contribute to various fields within engineering.
  2. Academic Qualifications: With a PhD in Mechanical Engineering and multiple relevant master’s and bachelor’s degrees, Dr. Basar possesses a solid educational foundation that underpins his research.
  3. Significant Contributions: His published works, including book chapters and numerous journal articles, indicate active engagement in research. The citation metrics (42 citations and an H-index of 4) highlight that his work is recognized and valued by the academic community.
  4. Research Methodology Expertise: Dr. Basar’s proficiency in experimental design and optimization methods, particularly the Taguchi Method and Grey Relational Analysis, showcases his ability to apply advanced statistical techniques to real-world engineering problems.
  5. Active Conference Participation: Regular attendance at national and international conferences demonstrates a commitment to staying updated with the latest developments in his field and sharing his findings with the broader scientific community.
  6. Journal Refereeing: Serving as a referee for multiple reputable journals illustrates his involvement in the academic process and recognition by peers.

Areas for Improvement:

  1. Increased Collaboration: While Dr. Basar has a solid publication record, collaboration with researchers from diverse fields could enhance the breadth and impact of his research.
  2. Enhancing Citation Impact: Although his citation metrics are commendable, focusing on publishing in high-impact journals could further increase his visibility and citation rate.
  3. Broader Public Engagement: Engaging with industry stakeholders and public forums could help translate his research findings into practical applications, increasing societal impact.
  4. Exploration of Emerging Technologies: Staying abreast of emerging technologies in materials science and mechanical engineering could provide new avenues for research and innovation.

Education:

Dr. Gokhan Basar’s educational journey began with a Bachelor’s degree in Mechanical Engineering, which laid the groundwork for his advanced studies. He earned his MSc in Mechanical Engineering from Iskenderun Technical University (2013-2016), where he focused on optimizing welding parameters in friction stir welding. His research culminated in a thesis that highlighted his proficiency in practical applications of engineering principles. Dr. Basar continued his academic pursuit at Osmaniye Korkut Ata University, where he completed his PhD in Mechanical Engineering (2017-2023). His doctoral research investigated the production of SiC and B4C particle-reinforced aluminum matrix composites through powder metallurgy, further showcasing his ability to innovate in materials engineering. Throughout his academic career, Dr. Basar has demonstrated a strong commitment to educational excellence and research development.

Experience:

Dr. Gokhan Basar has amassed extensive experience in academia, starting his career as a Research Assistant in the Department of Mechanical Engineering at Iskenderun Technical University from 2013 to 2016. His responsibilities included conducting research, assisting in teaching, and engaging in various engineering projects. In 2016, he transitioned to Osmaniye Korkut Ata University, where he currently serves as a Research Assistant in the Department of Industrial Engineering. In this role, Dr. Basar has focused on advancing knowledge in the fields of friction stir welding, materials machinability, and optimization methods. He has participated in numerous conferences, enhancing his professional network and contributing to the scientific community. His dedication to research and education has positioned him as a prominent figure in mechanical engineering, with a strong emphasis on innovative practices and experimental design.

Research Focus:

Dr. Gokhan Basar’s research focuses primarily on advanced welding techniques, particularly Friction Stir Welding (FSW), and the machinability and mechanical properties of materials. His expertise extends to optimization methods, including the Taguchi Method, Response Surface Methodology, and Grey Relational Analysis, enabling him to develop effective strategies for improving material performance and process efficiency. He is particularly interested in the production of composite materials, investigating the use of SiC and B4C particles in aluminum matrices to enhance their mechanical properties. His research also includes the design of experiments and multi-response optimization, providing insights into surface quality and operational parameters in various manufacturing processes. Dr. Basar’s commitment to innovation in mechanical engineering drives his work to address contemporary challenges and contribute to the evolution of engineering practices.

Publications Top Notes:

  1. Optimization of machining parameters in face milling using multi-objective Taguchi technique 📄
  2. Modeling and optimization of face milling process parameters for AISI 4140 steel 📄
  3. Determination of the optimum welding parameters for ultimate tensile strength and hardness in friction stir welding of Cu/Al plates using Taguchi method 📄
  4. Optimization of cutting parameters in hole machining process by using multi-objective Taguchi approach 📄
  5. Modeling and optimization for fly ash reinforced bronze-based composite materials using multi-objective Taguchi technique and regression analysis 📄
  6. Multi-response optimization in drilling of MWCNTs reinforced GFRP using grey relational analysis 📄
  7. Delik İşleme Prosesinde Kesme Parametrelerin Taguchi Metodu ve Regresyon Analiz Kullanılarak Modellenmesi ve Optimizasyonu 📄
  8. Kolemanit ve Boraks Takviyeli Fren Balatalarının Sürtünme Performansı 📄
  9. Sıcak presleme yöntemi ile üretilmiş uçucu kül takviyeli bronz matrisli fren balata malzemelerinin sürtünme-aşınma özellikleri üzerine kolemanit miktarının etkisi 📄
  10. Mathematical Modeling and Optimization of Milling Parameters in AA 5083 Aluminum Alloy 📄
  11. 316L Paslanmaz Çeliklerin Frezeleme işlemindeki Yüzey Pürüzlülüğün ANFIS ile Modellenmesi 📄
  12. Bronz Esaslı Kompozit Sürtünme Malzemelerin Üç Nokta Eğme Mukavemetinin Taguchi Metodu ile Optimizasyonu 📄
  13. Statistical Investigation of the Effect of CO2 Laser Cutting Parameters on Kerf Width and Heat Affected Zone in Thermoplastic Materials 📄
  14. A new hybrid meta-heuristic optimization method for predicting UTS for FSW of Al/Cu dissimilar materials 📄
  15. Prediction of surface hardness in a burnishing process using Taguchi method, fuzzy logic model and regression analysis 📄
  16. Multi-objective optimization of cutting parameters for polyethylene thermoplastic material by integrating data envelopment analysis and SWARA-based CoCoSo approach 📄
  17. Kompozit Malzemelerin Delme İşleminde İtme Kuvvetinin Taguchi Metodu ile Optimizasyonu ve Regresyon Analizi ile Tahmini 📄
  18. Tepki yüzeyi metodolojisi kullanılarak nanokompozitin delinmesinde oluşan itme kuvvetinin modellenmesi ve analizi 📄
  19. Analysis and Optimization of Ball Burnishing Process Parameters of AA 7075 Aluminium Alloy with Taguchi Method 📄
  20. The Effect of Colemanite and Borax Reinforced to the Friction Performance of Automotive Brake Linings 📄

Conclusion:

Dr. Gokhan Basar exemplifies the qualities of a strong candidate for the Research for Best Researcher Award. His extensive research experience, educational background, and contributions to the field of engineering position him as a noteworthy researcher. By focusing on collaboration, increasing his publication impact, and engaging with the broader community, he could further enhance his profile as a leading researcher. His commitment to advancing knowledge in his areas of expertise makes him a deserving candidate for this prestigious award.