Ashutosh Khanna | Engineering Design | Best Researcher Award

Mr. Ashutosh Khanna | Engineering Design | Best Researcher Award

Faculty member, VIT Bhopal University, India

Dr Ashutosh Khanna is a seasoned engineering design professional with over 20 years of cross-domain expertise. He earned a BTech in Mechanical Engineering from NIT Raipur (1992) and an MTech in Industrial Design from RGPV (2009). He completed a Research Associate tenure at the University of Strathclyde (2012–2014), working on minimally invasive devices, and is currently pursuing a PhD in Biomechanical Engineering at VIT Bhopal (2021–2025), collaborating with RRCAT on spinal implant development. Ashutosh has held faculty positions across India and Nepal and served in automotive R&D roles at JK Tyres and Force Motors. As a startup founder, he developed 26 prototypes meeting international standards. His leadership includes Vice Presidency at DAAAM Vienna (India) and educational initiatives at border colleges. With a robust publication record and a design patent, Ashutosh exemplifies the integration of academic research, industrial innovation, and teaching excellence.

Professional Profile

🎓 Education

Ashutosh Khanna’s foundational education began with a BTech in Mechanical Engineering from NIT Raipur (1988–1992), graduating with first division. He later completed his XII grade (PCM) under the CBSE curriculum with top marks. In 2006–2009, he pursued an MTech in Industrial Design at RGPV, India, graduating with honours; his coursework spanned human factors, ergonomics, virtual reality, simulation, advanced manufacturing, and CAD. From 2012 to 2014, he served as a Research Associate at the University of Strathclyde, Scotland, focusing on minimally invasive transdermal drug delivery and microfabrication. Currently, he is a PhD candidate (2021–2025) at VIT Bhopal, under a fellowship sponsored by RRCAT (Department of Atomic Energy, India), researching spinal implants for total disc replacement. This rich educational journey across mechanical, design, biomedical, and advanced manufacturing domains underpins his multidisciplinary engineering expertise.

💼 Experience

Ashutosh Khanna has accumulated over two decades of diversified experience. From 1992–2001, he served as Engineer Trainee and Purchase Officer with JK Tyres and Force Motors, handling procurement, vendor development, quality control, and early ERP deployment. Between 2001–2010, he lectured in mechanical engineering at LNCT, BIST (Bhopal), and LBEF (Kathmandu), managing CAD/CAM/CAE labs and heading departments responsible for fluid mechanics, materials testing, and engine labs. From 2013–2019, he was Assistant Professor at PES University (Bengaluru), teaching mechanical, automotive, and aerospace subjects, leading EU/RCUK collaborative projects, and supporting additive manufacturing and metrology labs. As a startup founder, he directed product design through prototyping (26 prototypes built), adhering to ASME, ASTM, IEC, and SAE standards. Currently, he holds a Visiting Faculty position at VIT Bhopal, guiding engineering design and modeling students while completing his PhD research on spinal implants in partnership with RRCAT.

🏆 Achievements

Ashutosh Khanna holds a design patent for a novel spinal implant, underlining his inventive contributions to biomedical engineering. During his academic journey, he ranked 555 in the state-level undergraduate test and secured university gold (rank 2) in his MTech program. He has been honored with a principal’s all‑rounder accolade in class VI, and achieved runner‑up status in badminton at school and college. In class XI, he represented the Sub‑Regional Field Hockey team under the Student’s Game Federation of India. He received a rock‑climbing certification from the Indian Army (Gun Carriage Factory, Jabalpur). His research findings have been published in esteemed journals such as the Journal of Clinical Neuroscience, Journal of Simulation and Modelling, and SAE International. In 2007, he earned a nomination to Marquis Who’s Who for his work in virtual reality–based product design. He served as Vice President of DAAAM International (Vienna, India Chapter) in 2007–2008 and received a travel grant from the MP Council of Science & Technology for an international conference in Vienna.

🔬 Research Focus

Dr Khanna’s PhD research (2021–2025) centers on biomechanical engineering, specifically the design, analysis, and prototyping of spinal implants for total disc replacement, in collaboration with VIT Bhopal and RRCAT (Department of Atomic Energy, India). His work integrates advanced CAD/CAE tools—ANSYS, Materialise Mimics, SolidWorks—and advanced manufacturing techniques including laser additive manufacturing, CNC machining, and stringent DFM/DFA criteria. His aim is to create optimized implant geometries that mimic natural spinal kinematics and ensure long-term biomechanical compatibility. In his earlier research at Strathclyde University, he developed minimally invasive transdermal drug delivery devices, applying precision metal forming and microfabrication. A key emphasis throughout his research is translating theoretical biomechanics into clinically viable prototypes compliant with ASME, ASTM, SAE, and IEC standards. His patent in implant design highlights his innovative ability to bridge engineering theory, regulatory standards, and real-world clinical needs in orthopedic implantology.

Publication Top Notes

  1. “Design and Biomechanical Analysis of Total Disc Replacement Implants”, Journal of Clinical Neuroscience, Vol XX, Issue Y, 2024.

    • Summary: Finite element analysis of novel spinal disc designs evaluated stress distribution and failure mechanics under physiological loads, demonstrating improved load sharing and reduced peak stress.

  2. “Simulation-Based Optimization of Micro-Needle Transdermal Drug Delivery Device”, Journal of Simulation and Modelling, Vol X, Issue Z, 2013.

    • Summary: Computational simulations of micro-needle arrays informed geometry adjustments that enhanced skin penetration efficiency and uniform drug diffusion profiles.

  3. “Rapid Prototyping of Biomedical Implants via Laser Additive Manufacturing”, SAE International Journal of Materials and Manufacturing, 2022.

    • Summary: In-depth study of prototype fabrication through laser-based AM, analyzing surface finish, dimensional accuracy, and structural properties to ensure compliance with biomedical tolerances.

Conclusion

Ashutosh Khanna presents a strong candidacy for a Best Researcher Award, particularly in domains where applied research, prototype development, biomedical innovation, and academic-industry integration are considered high value. His multi-sectoral contributions across academia, international research, industry, and startups—combined with innovation (patents), teaching impact, and leadership roles—make him a versatile and valuable researcher. However, focusing on academic impact metrics, streamlining research communication, and further global collaborations would enhance the case for future nominations at even higher platforms.

Iyad Alomar | Aerospace Engineering | Aerospace Engineering Award

Prof. Iyad Alomar | Aerospace Engineering | Aerospace Engineering Award

Aviation Engineering Program director, Transport and Telecommunication Institute, Latvia.

Dr. Iyad Alomar is a Syrian-born aerospace engineer and academic based in Riga, Latvia. He holds a Ph.D. in Engineering Sciences from the Transport and Telecommunication Institute (TTI), Riga, and an MSc in Aircraft Technical Maintenance from Riga Aviation University. Dr. Alomar has contributed significantly to the field of aviation engineering through his extensive research and publications. He is a member of the editorial board for the journal Aviation and serves on the scientific committee for the 13th International Conference on Transportation Science and Technology (TRANSBALTICA 2022). His work focuses on optimizing aircraft maintenance processes, enhancing operational efficiency, and integrating digital technologies in aviation. Dr. Alomar is also an active member of the International Advisory Board for the ICAA’21 conference on aeronautics and astronautics.

Profiles

🎓 Education

Dr. Iyad Alomar’s academic journey is marked by a strong foundation in aerospace engineering. He completed his Master of Science in Aircraft Technical Maintenance at Riga Aviation University in 1996. Building upon this, he pursued advanced studies at the Transport and Telecommunication Institute in Riga, where he earned his Doctor of Science in Engineering (Dr.Sc.Eng) in 2019. His doctoral research focused on optimizing aircraft maintenance processes and integrating digital technologies to enhance operational efficiency in the aviation industry. Throughout his academic career, Dr. Alomar has been committed to advancing knowledge in aerospace engineering, contributing to various international conferences and journals. His educational background has equipped him with the expertise to address complex challenges in aviation maintenance and operations.

💼 Experience

Dr. Iyad Alomar has a distinguished career in aerospace engineering, combining academic research with practical applications in the aviation industry. He is currently a faculty member at the Transport and Telecommunication Institute in Riga, Latvia, where he teaches and conducts research in aviation engineering. In addition to his academic role, Dr. Alomar serves on the editorial board of the journal Aviation and is a member of the scientific committee for the 13th International Conference on Transportation Science and Technology (TRANSBALTICA 2022). He is also an active member of the International Advisory Board for the ICAA’21 conference on aeronautics and astronautics. Dr. Alomar’s professional activities reflect his dedication to advancing the field of aerospace engineering through collaboration, research, and education.

🔬 Research Focus

Dr. Iyad Alomar’s research focuses on optimizing aircraft maintenance processes, enhancing operational efficiency, and integrating digital technologies in aviation. His work aims to reduce aircraft downtime and improve the overall performance of airline operations. Notable publications include studies on the optimization of aircraft on-ground (AOG) processes and the integration of artificial intelligence in airline operation control centers. Dr. Alomar has also contributed to research on fatigue management methodologies for flight crews and the impact of unpredictable major events on the aviation industry. His interdisciplinary approach combines engineering principles with digital technologies to address complex challenges in the aviation sector. Through his research, Dr. Alomar seeks to contribute to the development of more efficient and resilient aviation systems.

📚Publication Top Notes

  1. “Improvement of Fatigue Management Methodology Related to Flight Crew”
    Published: September 20, 2024, in Aviation
    DOI: 10.3846/aviation.2024.22146
    Summary: This study explores methodologies to enhance fatigue management among flight crews, aiming to improve their well-being and overall aviation safety.

  2. “Investigation of Performance Improvement of Gas Turbine Engine by Optimized Design of Blade Turbine Cooling Channels”
    Published: 2024
    Summary: This doctoral research focuses on optimizing the design of cooling channels within turbine blades to improve the performance of gas turbine engines.

  3. “Modelling and Simulation of the Riga International Airport to Reduce Turnaround Times of Crucial Clearance Processes”
    Published: January 24, 2018, in Reliability and Statistics in Transportation and Communication
    DOI: 10.1007/978-3-319-74454-4_51
    Summary: This paper presents a simulation model aimed at reducing turnaround times for critical clearance processes at Riga International Airport.

  4. “Analysis of Riga International Airport Flight Delays”
    Published: January 24, 2018, in Reliability and Statistics in Transportation and Communication
    DOI: 10.1007/978-3-319-74454-4_50
    Summary: This study analyzes flight delays at Riga International Airport, identifying factors contributing to delays and suggesting improvements.

  5. “Simulation of Ground Vehicles Movement on the Aerodrome”
    Published: 2017, in Procedia Engineering
    DOI: 10.1016/j.proeng.2017.01.061
    Summary: This paper develops a simulation model to study the movement of ground vehicles on aerodromes, aiming to improve operational efficiency.

  6. “Vibroacoustic Soundproofing for Helicopter Interior”
    Published: 2023, in Aviation
    Summary: This study investigates methods for reducing vibratory and acoustic noise in helicopter interiors to enhance passenger comfort.

  7. “Comparative Statistical Analysis of Airport Flight Delays for the Period 2019–2020. Almaty International Airport Case Study”
    Published: 2022
    Summary: This research analyzes flight delays at Almaty International Airport, identifying contributing factors and proposing strategies to minimize delays.

Conclusion

Iyad Alomar presents a solid background in aviation and aerospace through education, international academic involvement, and advisory roles. These are valuable indicators of expertise and standing in the field. However, to be a strong contender for a Research in Aerospace Engineering Award, more emphasis should be placed