Dalia El- Gazzar | Vibration and Dynamics | Best Researcher Award

Dr Dalia El- Gazzar | Vibration and Dynamics | Best Researcher Award

Dr Dalia El- Gazzar, National water research center, Egypt

Dr. Dalia Mohamed Sadek El-Gazzar is an accomplished expert in mechanical and electrical engineering with over 24 years of experience at the Mechanical & Electrical Research Institute (MERI). Specializing in optimizing hydro-electro-mechanical systems, her work has significantly advanced predictive maintenance and dynamic analysis of pumping stations. She holds a Ph.D. in Mechanical Engineering from Menoufia University and has contributed extensively to technical research and education, including teaching advanced courses on vibration analysis and predictive maintenance. Her dedication to improving the performance and reliability of drainage and irrigation systems underscores her commitment to engineering excellence.

Publication Profile

Scopus

Strengths for the Award

  1. Extensive Experience: Dalia Mohamed Sadek El-Gazzar has over 24 years of experience at the Mechanical & Electrical Research Institute (MERI), focusing on optimizing the operation and performance of hydro-electro-mechanical components in drainage and irrigation systems. This long-standing experience is a strong point for the award.
  2. Leadership Roles: She has held significant leadership roles, such as Director Deputy and Head of the Mechanical Department at MERI. Additionally, she has led multiple research projects related to dynamic analysis and quality control in irrigation and drainage systems.
  3. Research Contributions: Dalia has published numerous papers in reputable journals, highlighting her contributions to improving the dynamic performance and reliability of pumping systems. Her work in vibration analysis and preventive maintenance is particularly noteworthy.
  4. Educational Background: With a Ph.D. in Mechanical Engineering focused on vibration analysis of pumping systems, coupled with an M.Sc. and B.Sc. in related fields, her strong academic background supports her candidacy.
  5. Technical Expertise: Dalia has technical expertise in areas such as structural and mechanical vibration, fault detection, dynamic and hydraulic assessment, and preventive maintenance of rotating machinery.
  6. Conferences and Workshops: Her participation in a wide range of international conferences and workshops demonstrates her active involvement in the research community and her commitment to continuous learning and dissemination of knowledge.

Areas for Improvement

  1. Broader Impact: While her work is highly specialized in the field of mechanical and electrical systems for water resources, expanding her research to broader applications or interdisciplinary studies might enhance her impact and visibility within the research community.
  2. International Collaboration: Although she has participated in international conferences, increasing collaboration with international researchers or institutions could strengthen her research portfolio and provide diverse perspectives.
  3. Innovation and Patents: Emphasizing innovation through the development of new technologies or securing patents could further distinguish her work and contribute to practical advancements in her field.

Education

Dr. Dalia Mohamed Sadek El-Gazzar earned her Ph.D. in Mechanical Engineering from Menoufia University in February 2012, with a focus on vibration analysis of pumping systems with variable speed drives. She completed her M.Sc. in April 2004, studying the impact of bearing faults on dynamic behavior and power consumption in water pumps. Her B.Sc., obtained in May 1999, was in Production Engineering and Mechanical Design from the same institution. Her academic background has laid a strong foundation for her expertise in vibration analysis and predictive maintenance.

Experience

Dr. El-Gazzar’s professional journey spans over two decades, with roles including Director Deputy and Head of the Mechanical Department at MERI. She has led critical research projects on dynamic analysis and quality control in irrigation and drainage systems. Her experience includes hands-on inspection, calibration, and dynamic assessment of pumping stations. She has also contributed to numerous technical investigations and reports, enhancing system performance and reliability. Her role as an educator has involved teaching advanced engineering courses and training international engineers.

Research Focus

Dr. El-Gazzar’s research focuses on the dynamic performance and reliability of hydro-electro-mechanical systems in irrigation and drainage. Her work extensively covers vibration analysis, predictive maintenance, and fault diagnosis of pumping stations. She has explored the effects of variable speed drives, bearing faults, and structural vibrations on system efficiency. Her studies aim to optimize system performance, enhance reliability, and contribute to sustainable water resource management. Her research has significantly advanced the understanding and application of dynamic analysis in improving engineering practices.

Publication Top Notes

“Enhancing Efficiency and Dynamic Performance of Bearings in Pumping Stations” 📈

“Dynamic Performance Application of A Variable Speed Centrifugal Pump” 🚀

“Effect of Critical Speed on the Dynamic and Hydraulic Performance of a Variable Speed Pump” 🔧

“Vibration Analysis of Centrifugal Pump with Variable Speed Drives” ⚙️

“Evaluating Efficiency and Safety of Aerators in a Sanitary Drainage Station Using Vibration Analysis” 🔍

“Investigate the Effect of Fan Configuration on the Performance of Aeration Units for Waste Water Treatment” 💧

“Effect of Motor Vibration Problem on the Power Quality of Water Pumping Stations” ⚡

Conclusion

Dalia Mohamed Sadek El-Gazzar is a highly qualified candidate for the Best Researcher Award, given her extensive experience, leadership roles, and significant contributions to research in the field of mechanical and electrical systems for water resources. Her work has made valuable improvements in the performance and reliability of irrigation and drainage systems. While there is room for expanding her research’s impact and international collaboration, her current achievements make her a strong contender for the award.

 

Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto | Mechanical Engineering Award | Best Innovation Award

Mr Ralston Pinto, Robert Bosch GmbH,  Germany

Ralston Pinto, born on October 31, 1994, in India, is a mechanical engineer specializing in modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. Currently pursuing a PhD at RWTH Aachen University in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, he focuses on predicting contact mechanics in manufactured cells. Ralston’s expertise extends to finite element methods, material subroutines, and automation using Python and MATLAB. He has also worked on process influences on sensing elements during his master’s thesis at Bosch and has substantial experience in project management from his tenure at Hamon Group in India. Ralston is driven by the challenge of solving real-time engineering problems and values environments that foster innovative thinking and professional growth.

Publication Profile

Orcid 

Education

Ralston Pinto is currently pursuing his PhD in Mechanical Engineering at RWTH Aachen University, with a project focused on modeling and simulation of SOFC contacts in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich. He holds a Master of Science in Mechanical Engineering from Rheinwaal University of Applied Sciences, where he studied process engineering, materials, and simulation, earning a final grade of 1.8. His master’s thesis focused on understanding process influences on crack failure modes in exhaust gas sensors. Ralston completed his Bachelor of Engineering in Mechanical Engineering from the University of Mumbai, specializing in structural mechanics, fluid mechanics, simulation and CAD, thermodynamics, and process engineering. His bachelor’s thesis involved designing and assembling a pedal-powered water purification vehicle to address water scarcity in rural India.

Experience 

Ralston Pinto is currently engaged in doctoral research at Robert Bosch GmbH in Bamberg, Germany, focusing on the modeling and simulation of SOFC contacts using finite element methods. His work involves investigating the pressures on Solid Oxide Cell contacts and developing material subroutines for anisotropic plasticity. Previously, he completed a master’s thesis at Bosch in Stuttgart, Germany, exploring crack failure modes in exhaust gas sensors. Ralston also interned at Bosch, working on developing protective coatings for sensor elements. His early career includes a position as an Assistant Project Engineer at Hamon Group in Mumbai, India, where he coordinated national-level power sector projects, managed resource allocation, and controlled production processes. His diverse experiences have equipped him with a unique understanding of both project management and hands-on engineering tasks.

Awards and Honors

Ralston Pinto has been recognized for his academic excellence and professional contributions. He received the Deutschland Stipendium from the Bundesministerium für Bildung und Forschung, awarded for his outstanding academic performance at Rheinwaal University of Applied Sciences. This prestigious scholarship is given to students who demonstrate exceptional academic achievements and social commitment. During his tenure at Bosch, Ralston was involved in significant research projects that led to the implementation of his findings in the field. His contributions to the modeling and simulation of SOFC contacts and process influences on sensor failure modes have been well-received in the scientific community. Ralston’s dedication to solving real-world engineering problems and his innovative approach to research have earned him accolades and recognition from both academic and professional circles.

Research Focus 

Ralston Pinto’s research primarily focuses on the modeling and simulation of Solid Oxide Fuel Cell (SOFC) contacts. His doctoral thesis at RWTH Aachen University, in collaboration with Robert Bosch GmbH and Forschungszentrum Jülich, aims to predict the contact mechanics of manufactured cells, incorporating non-ideal aspects like tolerance distributions and uneven profiles. Ralston employs finite element methods, homogenization techniques, and anisotropic plasticity subroutines in his simulations. He also integrates Python and MATLAB for automation and data generation, utilizing machine learning methods for optimization. His master’s research at Bosch involved understanding process influences on crack failure modes in exhaust gas sensors, where he developed experimental methods and analyzed empirical data. Ralston’s broad research interests include computational fluid dynamics (CFD), materials science, process engineering, and the development of innovative solutions for real-world engineering challenges.

Publication Top Notes

A constitutive model for homogenized solid oxide cell contacts with dimensional tolerances

Homogenization of fuel cell interconnects to determine the contacting configuration in a stack

Christos Mytafides | Materials Engineering Award | Excellence in Innovation

Dr Christos Mytafides | Materials Engineering Award | Excellence in Innovation

Dr Christos Mytafides , University of Ioannina, Greece

Christos Mytafides is a distinguished researcher in advanced multifunctional materials and energy-harvesting technologies. Born on July 14, 1985, in Xanthi, Greece, he currently resides in Chania, Crete. Christos earned his Ph.D. from the University of Ioannina, focusing on printed electronics and energy-harvesting composites. His work is well-regarded for its innovation in integrating advanced materials into structural composites. He has held various roles, including Postdoctoral Research Scientist at Technical University of Crete and R&D Engineer at ARCO/Murray. Christos has been a Fulbright Scholar at the University of Miami and has collaborated with leading institutions like Eindhoven University of Technology. His research has led to multiple publications and patents, and he continues to push the boundaries of material science and sustainability.

Publication Profile

Google Scholar

Education

Christos Mytafides holds a Ph.D. in Materials Science & Engineering from the University of Ioannina, where he specialized in advanced multifunctional energy-harvesting materials (2018-2023). His Master’s Degrees include one in Advanced Materials from the University of Ioannina (2016-2018), focusing on optoelectronic and magnetic materials, and another in Environmental Engineering & Science from Democritus University of Thrace (2013-2015), emphasizing energy-efficient designs. He also has a Bachelor’s Degree in Structural Engineering from the International Hellenic University (2003-2009), where he studied structural analysis and restoration. Additionally, Christos completed online courses in Quantum Physics, Sustainable Energy, and other relevant fields from prestigious institutions like Stanford and MIT. His comprehensive education reflects a strong foundation in both theoretical and applied aspects of materials science and engineering.

Experience 

Christos Mytafides has a diverse professional background in materials science and engineering. Currently a Postdoctoral Research Scientist at Technical University of Crete, he works on advanced composite materials. Previously, he served as a Research & Development Engineer at ARCO/Murray, focusing on structural and sustainability engineering. He was involved in several projects at the University of Ioannina, including Horizon 2020 and NSRF projects related to energy harvesting and smart materials. Christos also gained valuable experience during his Fulbright Scholarship at the University of Miami, researching multifunctional composites. His work as a Lab Assistant and Teaching Assistant at various universities, including Eindhoven University of Technology and Democritus University of Thrace, further underscores his expertise in both research and education. His experience spans across different research laboratories and practical engineering roles, reflecting a robust career in material science.

Awards and Honors

Christos Mytafides has received significant recognition for his contributions to materials science and energy-harvesting technologies. He was awarded the Fulbright Scholarship for his research at the University of Miami, which highlights his innovative work in multifunctional composites. His research has been recognized in various prestigious journals, underscoring the impact of his contributions to advanced materials and energy-harvesting technologies. Christos has also been involved in notable projects such as Horizon 2020 and NSRF, further cementing his reputation in the field. His work on advanced composites and energy-harvesting materials has earned him several accolades, including publication in high-impact journals like Materials Advances and Journal of Power Sources. His commitment to advancing the field of materials science is reflected in the numerous awards and honors he has received throughout his career.

Research Focus 

Christos Mytafides’s research focuses on advanced multifunctional materials and energy-harvesting technologies. His work primarily explores the integration of printed electronics with structural composites to develop innovative energy-harvesting solutions. He is particularly interested in developing and characterizing materials that can efficiently convert and store energy. His research includes the design and fabrication of high-performance solar cells, thermoelectric generators, and other energy-harvesting devices. Christos’s work also encompasses optoelectronic and magnetic materials, with applications in sustainable energy systems and smart textiles. His contributions to the field have led to significant advancements in the efficiency and functionality of composite materials. By combining theoretical knowledge with practical applications, Christos aims to push the boundaries of materials science and engineering, addressing contemporary challenges in energy sustainability and advanced material development.

Publication Top Notes

“A hierarchically modified fibre-reinforced polymer composite laminate with graphene nanotube coatings operating as an efficient thermoelectric generator” 🌐 Energy Advances, 2024

“Integrated architectures of printed electronics with energy-harvesting capabilities in advanced structural composites” 📚 University of Ioannina, 2023

“Carbon fiber/epoxy composite laminates as through-thickness thermoelectric generators” 🛠️ Composites Science and Technology, 2023

“Fully printed and flexible carbon nanotube-based thermoelectric generator capable for high-temperature applications” ⚡ Journal of Power Sources, 2022

“Printed single-wall carbon nanotube-based Joule heating devices integrated as functional laminae in advanced composites” 🔬 ACS Applied Materials & Interfaces, 2021

“A high performance flexible and robust printed thermoelectric generator based on hybridized Te nanowires with PEDOT: PSS” 🔋 Applied Energy, 2021