Nana Chang | Power System Protection | Best Researcher Award

Dr. Nana Chang | Power System Protection | Best Researcher Award

Lecturer, School of Electrical Engineering, Xi’an University of Technology, China

Dr. Nana Chang is a distinguished researcher in electrical engineering, specializing in power system protection and renewable energy integration. She earned her Ph.D. in Electrical Engineering from Xi’an Jiaotong University in 2024, following a Master’s degree from North China Electric Power University and a Bachelor’s from Xi’an University of Technology. Currently serving as a Lecturer at Xi’an University of Technology, Dr. Chang bridges academia and industry through her involvement in several high-impact research projects. Her work addresses critical challenges in modern power systems, including fault protection in multi-voltage DC grids and resilience under extreme conditions. Dr. Chang has contributed to multiple national-level projects funded by the Ministry of Science and Technology and the National Natural Science Foundation of China. She also leads industry-sponsored research, focusing on innovative protection principles for renewable energy-dominated grids.

Profile

Orcid

Education

Dr. Nana Chang’s academic journey reflects a strong foundation in electrical engineering. She completed her Bachelor of Science in Electrical Engineering and Automation at Xi’an University of Technology in June 2012. Pursuing advanced studies, she obtained a Master of Science in Power System and Automation from North China Electric Power University (Beijing) in April 2015. Her academic pursuit culminated in a Doctor of Philosophy in Electrical Engineering from Xi’an Jiaotong University in September 2024. Her doctoral research focused on innovative protection methods for multi-voltage-level, multi-zone interconnected new energy DC distribution systems, addressing the evolving challenges in modern power systems. This progression showcases her commitment to advancing the field of electrical engineering through rigorous academic training and research.

Experience

Dr. Nana Chang’s professional experience spans both academia and industry, highlighting her expertise in electrical engineering. Since September 2024, she has been serving as a Lecturer at Xi’an University of Technology, where she contributes to the academic development of students and engages in cutting-edge research. Prior to her academic role, Dr. Chang worked at State Grid Xianyang Power Supply Company from August 2015 to June 2019, focusing on the secondary equipment maintenance of substations. This experience provided her with practical insights into power system operations and maintenance, enriching her research perspective. Her dual exposure to theoretical and practical aspects of electrical engineering enables her to bridge the gap between academic concepts and real-world applications effectively.

Research Focus 

Dr. Nana Chang’s research is centered on the protection and resilience of modern power systems, particularly in the context of renewable energy integration. Her doctoral research addressed fault characteristics and protection methods for multi-voltage-level, multi-zone interconnected new energy DC distribution systems, a critical area as the energy sector transitions toward decentralized and renewable sources. She is actively involved in projects funded by the Ministry of Science and Technology and the National Natural Science Foundation of China, focusing on protection strategies for flexible low-frequency transmission systems and resilience technologies for urban energy systems under extreme conditions. Additionally, Dr. Chang leads industry-sponsored research on innovative protection principles for renewable energy-dominated grids. Her work aims to enhance the reliability and stability of power systems amidst the challenges posed by renewable energy sources.

Publication Top Notes

📘1. Phase Current Based Fault Section Location for Single-Phase Grounding Fault in Non-Effectively Grounded Distribution Network

  • Journal: IEEE Transactions on Industry Applications

  • Year: 2025

  • Authors: Zhongxue Chang, Qingyu He, Nana Chang, Weibin Tan, Wei Zhang, Zhihua Zhang, Guobing Song

  • Summary:
    This paper proposes a novel phase current-based method to locate fault sections caused by single-phase grounding in non-effectively grounded distribution networks. The approach enhances fault localization accuracy in complex systems where conventional methods fall short. The solution reduces misjudgment rates and increases system reliability in medium-voltage power networks, especially relevant to regions with high renewable penetration.

📘 2. Adaptive Fault Identification for Multi-Level Relays Using Fault Tree and User-Defined Inverse-Time Characteristics Equation

  • Journal: Electric Power Systems Research

  • Year: September 2025

  • Authors: Nana Chang, Guobing Song, Jiaheng Jiang

  • Summary:
    This study introduces an adaptive method for fault identification in multi-level relay systems. By combining a fault tree analysis framework with user-defined inverse-time characteristics, the method provides more precise fault detection under variable grid configurations. The adaptive behavior supports more intelligent and flexible relay coordination, particularly important for evolving smart grid environments.

📘 3. An Adaptive Coordinated Wide-Area Backup Protection Algorithm for Network Topology Variability

  • Journal: IEEE Transactions on Power Delivery

  • Year: April 2024

  • Authors: Nana Chang, Guobing Song

  • Summary:
    This paper presents a wide-area backup protection algorithm that adapts to real-time changes in power system topology. The method dynamically adjusts coordination parameters based on topology recognition, improving fault response and ensuring system stability in large-scale and reconfigurable grids. It offers significant improvements in response speed and adaptability for modern interconnected systems.

📘 4. Fault Identification Method Based on Unified Inverse-Time Characteristic Equation for Distribution Network

  • Journal: International Journal of Electrical Power & Energy Systems

  • Year: March 2023

  • Authors: Nana Chang, Guobing Song, Junjie Hou, Zhongxue Chang

  • Summary:
    This article introduces a unified fault identification method for distribution networks using a standardized inverse-time characteristic equation. The technique enhances the coordination of protection devices across diverse protection zones. It is particularly suited for high-penetration renewable energy systems, where conventional settings may not provide reliable fault discrimination due to dynamic operating conditions.

Conclusion

Dr. Nana Chang demonstrates strong technical competence, relevance in research areas, and a well-rounded background in academic and industrial projects. Her work directly contributes to critical advancements in power system protection and renewable energy integration, areas vital to modern energy infrastructure.