Dr. Kaivan Mohammadi | Mathematics | Best Researcher Award

Dr. Kaivan Mohammadi | Mathematics | Best Researcher Award

University of kurdistan | Iran

Dr. Mohammad kaivan is an Associate Professor in the Department of Mathematics at the University of Kurdistan, Iran, with a PhD in Applied Mathematics (Numerical Analysis) from Iran University of Science and Technology. h-index-4, citiation-31, total Documents-7. He has developed expertise in numerical analysis, especially in sinc‐based and collocation methods, integro‐differential equations, singular boundary value problems, and singularly perturbed systems, as evidenced by his work in nonclassical sinc-collocation, double sinc methods, SE- and DE-sinc collocation, and Volterra–Fredholm integrodifferential equations (as in the list of seven articles you provided). He teaches advanced numerical methods, differential equations, and computational mathematics courses. While explicit awards are not publicly listed, his sustained contributions and multiple publications in international journals reflect recognition within his field. His research interests span numerical methods for singular, integro-differential, and boundary value problems, exponential convergence analyses, and applications in physiology and engineering. In summary, Dr. Ghasemi is a prominent researcher in sinc-collocation numerical methods, contributing theoretical advances and computational techniques valuable to applied mathematics and scientific modeling.

Profile : Scopus

Featured Publications

Mohammadi, K., Alipanah, A., & Ghasemi, M. (2022). A non-classical sinc-collocation method for the solution of singular boundary value problems arising in physiology. International Journal of Computer Mathematics, 99(8), 1941–1967.

Alipanah, A., Mohammadi, K., & Ghasemi, M. (2023). Numerical solution of third-order boundary value problems using non-classical sinc-collocation method. Computational Methods for Differential Equations, 11(3), 643–663.*

Ghasemi, M., Mohammadi, K., & Alipanah, A. (2023). Numerical solution of system of second-order integro-differential equations using nonclassical sinc collocation method. Boundary Value Problems, 38(1), 1–24.*

Mohammadi, K., & Alipanah, A. (2023). Numerical solution of the system of second-order integro-differential equations using non-classical double sinc method. Results in Applied Mathematics, 19, 100381.*

Alipanah, A., Mohammadi, K., & Shiralizadeh, M. (2023). Numerical solution of third-order singular boundary value problems with nonclassical SE-sinc-collocation and nonclassical DE-sinc-collocation. Results in Applied Mathematics, 20, 100403

Muhammad Amer Qureshi | Biomedical Engineering | Best Researcher Award

Assoc. Prof. Dr. Muhammad Amer Qureshi | Biomedical Engineering | Best Researcher Award

University of Nizwa | Oman

Associate Professor Muhammad Amer Qureshi is a distinguished mathematician. He holds a Ph.D. in Mathematics , an M.S. in Engineering Sciences , and an M.Sc. in Computational Mathematics . His academic career has spanned roles as Associate Professor at the University of Nizwa (Oman), Associate and Assistant Professor at KFUPM (Saudi Arabia), and earlier appointments at GIK Institute and the University of Auckland. His research interests lie in numerical methods for ordinary differential equations (including one-step and multistep integrators, symplectic schemes), computational fluid dynamics (especially nano-hybrid fluids and heat transfer modeling), and the application of symmetries in general relativity (Noether’s theorem, space–time symmetries). He has supervised numerous undergraduate and graduate research projects, secured multiple externally funded grants, and published extensively in ISI/Scopus journals. Among his honors are repeated recognition in the Top 2% of global scientists, an Excellence in Teaching Award, and merit-based scholarships for Ph.D. and MS studies. In sum, his multifaceted contributions to theory, computation, and pedagogy mark him as a leading researcher and educator dedicated to advancing mathematics and engineering science.

Profile : Google Scholar

Featured Publications

Qureshi, M. A., & Hussain, S., & Sadiq, M. A. (2021). Numerical simulations of MHD mixed convection of hybrid nanofluid flow in a horizontal channel with cavity: Impact on heat transfer and hydrodynamic forces. Case Studies in Thermal Engineering, 27, 101321.

Qureshi, M. A. (2022). Thermal capability and entropy optimization for Prandtl–Eyring hybrid nanofluid flow in solar aircraft implementation. Alexandria Engineering Journal, 61(7), 5295–5307.

Qureshi, M. A. (2020). Numerical simulation of heat transfer flow subject to MHD of Williamson nanofluid with thermal radiation. Symmetry, 13(1), 10.

Qureshi, M. A. (2021). A case study of MHD driven Prandtl–Eyring hybrid nanofluid flow over a stretching sheet with thermal jump conditions. Case Studies in Thermal Engineering, 28, 101581.

Shahzad, F., Jamshed, W., Ibrahim, R. W., Nisar, K. S., & Qureshi, M. A., et al. (2021). Comparative numerical study of thermal features analysis between Oldroyd-B copper and molybdenum disulfide nanoparticles in engine-oil-based nanofluids flow. Coatings, 11(10), 1196.

Sohail Ahmad Khan | Mathematics | Young Scientist Award

Dr. Sohail Ahmad Khan | Mathematics | Young Scientist Award

Quaid I Azam University Islamabad | Pakistan

Dr. Sohail Ahmad Khan is a distinguished researcher in Applied Mathematics with a strong background in Computational Fluid Dynamics, mathematical modeling, and heat and mass transfer. He earned his Ph.D., M.Phil., and M.Sc. in Applied Mathematics from Quaid-i-Azam University, Pakistan. His academic journey reflects a deep commitment to advancing analytical and numerical methods for nonlinear problems in Newtonian and non-Newtonian fluid mechanics.  Dr. Khan’s research primarily focuses on nanofluid flow, entropy generation, magnetohydrodynamics, and thermal analysis using advanced techniques such as the Homotopy Analysis Method, Finite Difference Method, and Keller Box Method. He actively serves as a reviewer for more than 120 high-impact journals and has received multiple international recognitions, including the World’s Top 2% Scientist ranking by Stanford University in 2022 and 2024. His dedication to mathematical innovation and interdisciplinary applications continues to influence modern engineering and physical sciences, contributing significantly to global research on nonlinear transport phenomena and energy optimization.

Profile : Google Scholar

Featured Publications

Hayat, T., Khan, S. A., Khan, M. I., & Alsaedi, A. (2019). Theoretical investigation of Ree–Eyring nanofluid flow with entropy optimization and Arrhenius activation energy between two rotating disks. Computer Methods and Programs in Biomedicine, 177, 57–68.

Khan, S. A., Hayat, T., Alsaedi, A., & Ahmad, B. (2021). Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis. Renewable and Sustainable Energy Reviews, 140, 110739.

Hayat, T., Khan, S. A., Khan, M. I., & Alsaedi, A. (2019). Optimizing the theoretical analysis of entropy generation in the flow of second grade nanofluid. Physica Scripta, 94(8), 085001.

Razaq, A., Hayat, T., Khan, S. A., & Momani, S. (2023). ATSS model based upon applications of Cattaneo-Christov thermal analysis for entropy optimized ternary nanomaterial flow with homogeneous-heterogeneous chemical reactions. Alexandria Engineering Journal, 79, 390–401.

Khan, S. A., Hayat, T., Khan, M. I., & Alsaedi, A. (2020). Salient features of Dufour and Soret effect in radiative MHD flow of viscous fluid by a rotating cone with entropy generation. International Journal of Hydrogen Energy, 45(28), 14552–14564.

Elena Strelnikova | Engineering and Technology | Best Paper Award

Prof. Elena Strelnikova | Engineering and Technology | Best Paper Award

Anatolii Pidgorny Institute of Power Machines and Systems, NAS of Ukraine | Ukraine

Dr. E.A. Strelnikova is a distinguished Ukrainian researcher specializing in structural mechanics, numerical methods, and fluid-structure interaction. She completed her MSc in Mathematics at V. N. Karazin Kharkiv National University in 1974, followed by a PhD in 1983 on 2D contact problems for anisotropic cracked plates, and a DSc in 2003 focusing on the strength and vibrations of turbo-machine units using the boundary element method. Dr. Strelnikova has held full professorships at Kharkiv Polytechnic Institute, Karazin National University, and Kharkiv National University of Radio Electronics. Since 2007, she has been a leading researcher at the A. Pidhorny Institute of Power Machines and Systems of the National Academy of Sciences of Ukraine. Her research interests include singular and hypersingular integral equations, fracture dynamics, and fluid-structure interaction. She has published over 261 papers, with more than 1986 citations and an h-index of 29 . Dr. Strelnikova’s work has significantly contributed to the development of computational techniques combining boundary and finite element methods to analyze fluid-structure interaction problems. Her contributions have been recognized through various awards in engineering and applied mathematics. Dr. Strelnikova’s extensive experience and research have made her a leading figure in her field, with her work continuing to influence studies in structural mechanics and computational methods.

Profile : Google Scholar

Featured Publications

Ventsel, E. S., Naumenko, V., Strelnikova, E., & Yeseleva, E. (2010). Free vibrations of shells of revolution filled with a fluid. Engineering Analysis with Boundary Elements, 34(10), 856–862.

Sierikova, O., Koloskov, V., Degtyarev, K., & Strelnikova, O. (2021). The deformable and strength characteristics of nanocomposites improving. Materials Science Forum, 1038, 144–153.

Strelnikova, E., Kriutchenko, D., Gnitko, V., & Degtyarev, K. (2020). Boundary element method in nonlinear sloshing analysis for shells of revolution under longitudinal excitations. Engineering Analysis with Boundary Elements, 111, 78–87.

Strelnikova, E. A., Choudhary, N., Kriutchenko, D. V., Gnitko, V. I., et al. (2020). Liquid vibrations in circular cylindrical tanks with and without baffles under horizontal and vertical excitations. Engineering Analysis with Boundary Elements, 120, 13–27.

Karaiev, A., & Strelnikova, E. (2011). Singular integrals in axisymmetric problems of elastostatics. International Journal of Modeling, Simulation, and Scientific Computing, 11(1), 115–130.