ILYACE KORODOWOU | Materials Sciences | Best Researcher Award

Dr. ILYACE KORODOWOU | Materials Sciences | Best Researcher Award

PhD, Faculty of Sciences and Techniques of Tangier (FSTT), Morocco

Ilyace Korodowou is a Togolese PhD candidate in Materials Science and Engineering at the Faculty of Sciences and Techniques of Tangier, Morocco. With a background in Mathematics and Natural Sciences, Ilyace graduated with honors from Eyadema Military College in 2016. After completing studies in Biology, Chemistry, and Geology, he pursued a Bachelor’s and Master’s degree in Materials Science, focusing on materials recycling, biopolymer characterization, and sustainable technologies. His research interests include nonwoven processes, plastics, and environmental applications. Ilyace has gained valuable experience in academic research, as well as professional roles in scientific projects and laboratory environments. Outside of his studies, he enjoys reading, football, jogging, and watching crime series. His interdisciplinary approach and passion for impactful research make him a promising figure in the field of materials science.

Profile

Education

Ilyace Korodowou has pursued a diverse and rigorous educational journey in the field of Materials Science and Engineering. His academic path began at Eyadema Military College in Togo, where he completed his high school education in Mathematics and Natural Sciences in 2016. Afterward, he pursued studies in Biology, Chemistry, and Geology (DEUST), followed by a Bachelor’s degree in Chemical Analysis Techniques at Abdelmalek Essaâdi University in Tangier, Morocco. He furthered his education by obtaining a Master’s degree in Materials Engineering for Plastics and Metallurgy (GMPM), deepening his expertise in physics, chemistry, and mechanical engineering. Currently, he is a PhD candidate specializing in Materials Sciences and Engineering, focusing on the recycling, valorization, and characterization of biopolymers, as well as sustainable nonwoven processes. His research is grounded in scientific curiosity, innovation, and a commitment to environmental sustainability.

Experience

Ilyace Korodowou has developed extensive experience in materials science and research, gaining hands-on exposure in various labs and research projects. He is currently a PhD candidate at Abdelmalek Essaâdi University, where his research focuses on sustainable materials, particularly nonwoven technologies, plastics recycling, and biopolymer characterization. Ilyace also worked as a research assistant at the Technical Center of Plastics and Rubber in Casablanca, Morocco, from 2021 to 2023, gaining practical insights into plastic and rubber material processing. He has participated in a number of internships, including work at the Physico-Chemistry Laboratory of Natural Materials and the LAMSE Laboratory. His past roles also include laboratory assistance, where he supervised practical sessions for undergraduates and provided guidance on research methodologies. Additionally, Ilyace has contributed to several scientific conferences and is actively involved in mentoring students for their final-year projects, showcasing his commitment to advancing knowledge and fostering new talent in materials science.

Awards and Honors

Ilyace Korodowou has earned various academic and professional accolades in his field. Notably, he received the first prize at the third edition of the CESTOM-INNOVE project competition in 2022, awarded for his innovative ecoVALFI project, focusing on sustainable materials. His academic journey has been marked by several prestigious certifications, including a badge of achievement in “Optimization of Processes and Advanced Processes of Thermoplastics and Composites” from Institut Mines-Télécom in Paris (2024), and a series of research-focused certificates from Clarivate, University of Liège, and Paris-Saclay University. Ilyace has also excelled in numerous online learning platforms, including earning badges in Biomass and Green Chemistry, Nanoscience, and Advanced Chemistry. His ongoing academic success underscores his commitment to advancing in materials science and engineering, particularly in sustainable development and environmental preservation.

Research Focus

Ilyace Korodowou’s research focuses on the sustainable recycling and valorization of materials, particularly in the fields of biopolymers, nonwoven technologies, and plastic materials processing. His work explores environmentally friendly alternatives to traditional materials, such as the use of sisal fibers and recycled materials in industrial applications. Ilyace is dedicated to characterizing and functionalizing biopolymers, with a focus on improving their properties for various applications in sustainability. He is also exploring innovative nonwoven processes, specifically in the context of filtration membranes and absorbent materials, that can help reduce the environmental impact of plastic waste. Additionally, his research includes the design and optimization of materials for specific applications, including the development of composite materials and the study of life cycle assessments (LCA) for environmental impact evaluation. Ilyace’s interdisciplinary approach combines materials science, engineering, and environmental science to create a more sustainable future through innovative material design and processing.

Publication Top Notes

  • Evaluating sisal fibers as an eco-friendly and cost-efficient alternative to cotton for the Moroccan absorbent hygiene and textile industries 🌱 (Industrial Crops and Products, 2024)
  • Industrial ecology in Morocco: wet laying composite air filter membrane based on cottonized sisal fibers and recycled nonwoven supermarket bag 🌿 (Biomass Conversion and Biorefinery, 2024)
  • Stabilization of Argan Oil Nanoemulsions Using Chitosan Extracted from Pink Shrimp Shells 🐚 (Applied Science, 2025)
  • Cottonized sisal fibers: a more economic and sustainable alternative to natural cotton, – for absorbent textile and hygienic products, in Morocco 🌱 (2024)
  • Industrial Ecology in Morocco: Wet Laying Composite Filter Membrane Based on Cottonized Sisal Fibers and Recycled Non-Woven Supermarket Bag 🧵 (2023)
  • Composite membrane based on cellulose fibers and recycled polypropylene: a more economic and sustainable alternative for the filtration of particles in the air 🌍 (8th International Symposium on Sediment Management, 2024)

 

 

Xiangling Li | Engineering | Best Researcher Award

Dr. Xiangling Li | Engineering | Best Researcher Award

Research Associate, Dartmouth College, United States

Dr. Xiangling Li is an accomplished researcher in biomedical engineering, specializing in micro/nano manufacturing, wearable bioelectronics, and precision medical devices. He currently serves as an Assistant Research Fellow at Dartmouth College, where he focuses on integrating advanced materials and nanotechnology into medical applications. With a Ph.D. from Sun Yat-sen University and postdoctoral research at the University of Southern California, Dr. Li has contributed to cutting-edge innovations in biosensors, drug delivery, and flexible electronics. His groundbreaking research has led to numerous high-impact publications in Advanced Science, Nature Communications, Advanced Functional Materials, and ACS Applied Materials & Interfaces, accumulating hundreds of citations. Dr. Li’s expertise in interdisciplinary research enables the development of next-generation medical devices, improving patient care and diagnostics. His work in integrating electronics, materials science, and life sciences has positioned him as a leader in the field, driving innovations in biomedical engineering and translational medicine.

Profile

Google Scholar
Orcid

Education

Dr. Xiangling Li pursued his academic journey with a strong focus on biomedical engineering and materials science. He earned his Ph.D. in Engineering (Biomedical Engineering) from Sun Yat-sen University, China (2018–2022), where he conducted pioneering research under the guidance of Prof. Xi Xie. His doctoral research focused on developing smart nanomaterials and biosensors for medical applications. After completing his Ph.D., he joined the University of Southern California as a Postdoctoral Fellow (2022–2023) under Prof. Hangbo Zhao, where he advanced his work on flexible bioelectronics and precision medicine. Dr. Li is currently an Assistant Research Fellow at Dartmouth College (since 2023), working with Prof. Wei Ouyang on cutting-edge medical technologies. His diverse educational background has equipped him with expertise in nano/microfabrication, electronic biosensors, and biomedical device engineering, enabling him to make significant contributions to translational medicine and wearable healthcare solutions.

Experience

Dr. Xiangling Li has extensive experience in biomedical engineering, focusing on micro/nano fabrication, biosensors, and advanced medical devices. He is currently an Assistant Research Fellow at Dartmouth College (2023–Present), where he explores novel bioelectronic interfaces for healthcare applications. Previously, he was a Postdoctoral Fellow at the University of Southern California (2022–2023), where he contributed to research on flexible electronic systems for precision medicine. Dr. Li completed his Ph.D. at Sun Yat-sen University (2018–2022), where he developed groundbreaking microfabricated biosensors and drug delivery platforms. His research expertise spans interdisciplinary fields, including wearable diagnostics, nanotechnology-enabled therapeutics, and malleable electronics. With multiple high-impact publications and extensive collaborations across disciplines, Dr. Li’s contributions continue to shape the future of smart medical devices. His experience bridges academia and industry, enabling the development of innovative biomedical solutions that improve patient outcomes and healthcare monitoring.

Research Focus

Dr. Xiangling Li’s research is centered on micro/nano manufacturing technologies for biomedical applications. His work integrates flexible electronics, biosensors, and smart materials to develop next-generation medical devices. He specializes in wearable and implantable bioelectronics, focusing on precision drug delivery, transdermal biosensing, and real-time health monitoring. A key area of his research involves microneedle-based systems for minimally invasive glucose monitoring, intraocular pressure regulation, and intelligent drug release platforms. Additionally, he explores graphene-based biosensors, nanoneedle platforms, and soft bioelectronics for enhanced biomedical applications. His innovations in smart contact lenses, flexible supercapacitors, and biocompatible coatings contribute to the advancement of personalized medicine and point-of-care diagnostics. Dr. Li’s interdisciplinary approach, combining electronics, materials science, and life sciences, drives the development of high-performance biomedical devices. His research holds significant potential for revolutionizing non-invasive diagnostics, therapeutic monitoring, and next-generation wearable healthcare solutions.

Publications 📚

  • A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment
  • Intelligent wireless theranostic contact lens for electrical sensing and regulation of intraocular pressure
  • Reduced graphene oxide nanohybrid–assembled microneedles as mini-invasive electrodes for real-time transdermal biosensing
  • Smartphone-powered iontophoresis-microneedle array patch for controlled transdermal delivery
  • Nanoneedle platforms: the many ways to pierce the cell membrane
  • Electrodes derived from carbon fiber-reinforced cellulose nanofiber/multiwalled carbon nanotube hybrid aerogels for high-energy flexible asymmetric supercapacitors
  • Hierarchical graphene/nanorods-based H₂O₂ electrochemical sensor with self-cleaning and anti-biofouling properties
  • Emerging roles of 1D vertical nanostructures in orchestrating immune cell functions
  • Fe₃O₄ nanoparticles embedded in cellulose nanofiber/graphite carbon hybrid aerogels as advanced negative electrodes for flexible asymmetric supercapacitors
  • Wearable and implantable intraocular pressure biosensors: recent progress and future prospects

 

 

 

Christos Mytafides | Materials Engineering Award | Excellence in Innovation

Dr Christos Mytafides | Materials Engineering Award | Excellence in Innovation

Dr Christos Mytafides , University of Ioannina, Greece

Christos Mytafides is a distinguished researcher in advanced multifunctional materials and energy-harvesting technologies. Born on July 14, 1985, in Xanthi, Greece, he currently resides in Chania, Crete. Christos earned his Ph.D. from the University of Ioannina, focusing on printed electronics and energy-harvesting composites. His work is well-regarded for its innovation in integrating advanced materials into structural composites. He has held various roles, including Postdoctoral Research Scientist at Technical University of Crete and R&D Engineer at ARCO/Murray. Christos has been a Fulbright Scholar at the University of Miami and has collaborated with leading institutions like Eindhoven University of Technology. His research has led to multiple publications and patents, and he continues to push the boundaries of material science and sustainability.

Publication Profile

Google Scholar

Education

Christos Mytafides holds a Ph.D. in Materials Science & Engineering from the University of Ioannina, where he specialized in advanced multifunctional energy-harvesting materials (2018-2023). His Master’s Degrees include one in Advanced Materials from the University of Ioannina (2016-2018), focusing on optoelectronic and magnetic materials, and another in Environmental Engineering & Science from Democritus University of Thrace (2013-2015), emphasizing energy-efficient designs. He also has a Bachelor’s Degree in Structural Engineering from the International Hellenic University (2003-2009), where he studied structural analysis and restoration. Additionally, Christos completed online courses in Quantum Physics, Sustainable Energy, and other relevant fields from prestigious institutions like Stanford and MIT. His comprehensive education reflects a strong foundation in both theoretical and applied aspects of materials science and engineering.

Experience 

Christos Mytafides has a diverse professional background in materials science and engineering. Currently a Postdoctoral Research Scientist at Technical University of Crete, he works on advanced composite materials. Previously, he served as a Research & Development Engineer at ARCO/Murray, focusing on structural and sustainability engineering. He was involved in several projects at the University of Ioannina, including Horizon 2020 and NSRF projects related to energy harvesting and smart materials. Christos also gained valuable experience during his Fulbright Scholarship at the University of Miami, researching multifunctional composites. His work as a Lab Assistant and Teaching Assistant at various universities, including Eindhoven University of Technology and Democritus University of Thrace, further underscores his expertise in both research and education. His experience spans across different research laboratories and practical engineering roles, reflecting a robust career in material science.

Awards and Honors

Christos Mytafides has received significant recognition for his contributions to materials science and energy-harvesting technologies. He was awarded the Fulbright Scholarship for his research at the University of Miami, which highlights his innovative work in multifunctional composites. His research has been recognized in various prestigious journals, underscoring the impact of his contributions to advanced materials and energy-harvesting technologies. Christos has also been involved in notable projects such as Horizon 2020 and NSRF, further cementing his reputation in the field. His work on advanced composites and energy-harvesting materials has earned him several accolades, including publication in high-impact journals like Materials Advances and Journal of Power Sources. His commitment to advancing the field of materials science is reflected in the numerous awards and honors he has received throughout his career.

Research Focus 

Christos Mytafides’s research focuses on advanced multifunctional materials and energy-harvesting technologies. His work primarily explores the integration of printed electronics with structural composites to develop innovative energy-harvesting solutions. He is particularly interested in developing and characterizing materials that can efficiently convert and store energy. His research includes the design and fabrication of high-performance solar cells, thermoelectric generators, and other energy-harvesting devices. Christos’s work also encompasses optoelectronic and magnetic materials, with applications in sustainable energy systems and smart textiles. His contributions to the field have led to significant advancements in the efficiency and functionality of composite materials. By combining theoretical knowledge with practical applications, Christos aims to push the boundaries of materials science and engineering, addressing contemporary challenges in energy sustainability and advanced material development.

Publication Top Notes

“A hierarchically modified fibre-reinforced polymer composite laminate with graphene nanotube coatings operating as an efficient thermoelectric generator” 🌐 Energy Advances, 2024

“Integrated architectures of printed electronics with energy-harvesting capabilities in advanced structural composites” 📚 University of Ioannina, 2023

“Carbon fiber/epoxy composite laminates as through-thickness thermoelectric generators” 🛠️ Composites Science and Technology, 2023

“Fully printed and flexible carbon nanotube-based thermoelectric generator capable for high-temperature applications” ⚡ Journal of Power Sources, 2022

“Printed single-wall carbon nanotube-based Joule heating devices integrated as functional laminae in advanced composites” 🔬 ACS Applied Materials & Interfaces, 2021

“A high performance flexible and robust printed thermoelectric generator based on hybridized Te nanowires with PEDOT: PSS” 🔋 Applied Energy, 2021