Prof. Dr. Galder Kortaberria | Polymeric materials | Best Review Paper Award
Professor, University of the Basque Country, Spain
Dr. Galder Kortaberria Altzerreka is a distinguished Professor of Chemical Engineering at the University of the Basque Country (UPV/EHU). Born on March 25, 1975, he has established himself as a leading expert in polymer science, particularly in the development and characterization of nanostructured thermosetting systems and biopolymers. His doctoral research focused on the simultaneous analysis of curing processes in thermoset matrices using infrared spectroscopy and impedance measurements. Over the years, Dr. Kortaberria has contributed significantly to the field through numerous publications and collaborations with international research institutions. His work has been instrumental in advancing the understanding of molecular dynamics, dielectric spectroscopy, and the development of sustainable polymeric materials. In recognition of his contributions, he was appointed as a Full Professor in April 2024.
Professional Profile
Education
Dr. Kortaberria completed his undergraduate studies in Chemical Sciences at the University of the Basque Country (UPV/EHU) in June 1998. He pursued his doctoral studies at the same institution, earning his Ph.D. in Chemical Sciences in April 2004. His doctoral thesis, titled “Simultaneous Analysis by IR with Optical Fibers and Impedances of Curing Processes of Thermoset Matrices Modified with Thermoplastics,” was supervised by Dr. Iñaki Bixintxo Mondragón Egaña. This research laid the foundation for his future work in polymer science, focusing on the characterization and development of advanced polymeric materials. Throughout his academic journey, Dr. Kortaberria has demonstrated a strong commitment to research and education, contributing to the advancement of knowledge in his field.
Experience
Dr. Kortaberria’s academic career began in 2002 as an interim lecturer at the Polytechnic University School (UPV). He held various teaching positions, including Associate Professor and Interim Lecturer, at different faculties within UPV/EHU. In June 2011, he was appointed as an Associate Professor at the School of Engineering of Gipuzkoa, where he continued to advance his research and teaching activities. His dedication and contributions led to his promotion to Full Professor in April 2024, as documented in the official state bulletin (BOE-A-2024-6876). Throughout his career, Dr. Kortaberria has been actively involved in research projects, focusing on polymer science, nanotechnology, and sustainable materials. His extensive experience in both academia and research has made him a respected figure in his field.
Research Focus
Dr. Kortaberria’s research primarily centers on the development and characterization of advanced polymeric materials. His work involves the use of dielectric spectroscopy, molecular dynamics, and infrared spectroscopy to study the curing processes and properties of thermoset matrices modified with thermoplastics. He has a keen interest in biopolymers and nanocomposites, exploring their potential in creating sustainable and high-performance materials. His research has led to significant advancements in understanding the molecular behavior of polymers and the development of materials with tailored properties for various applications. Through collaborations with international research institutions, Dr. Kortaberria continues to contribute to the field of polymer science, pushing the boundaries of material innovation.
Publication Top Notes:
Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties
Polymer Engineering & Science, 2008
This study investigates the mechanical and thermal properties of thermoplastic polyurethane elastomers synthesized from polycarbonate diols with varying molecular weights and chemical structures. The research provides insights into how these variations affect the performance of the resulting materials.
Modification of montmorillonite with cationic surfactants. Thermal and chemical analysis including CEC determination
Applied Clay Science, 2008
The paper explores the modification of montmorillonite clay using cationic surfactants. It includes thermal and chemical analyses, as well as cation exchange capacity (CEC) determination, to understand the effects of modification on the clay’s properties.
Nanostructured thermosetting systems by modification with epoxidized styrene−butadiene star block copolymers. Effect of epoxidation degree
Macromolecules, 2006
This research focuses on the development of nanostructured thermosetting systems by incorporating epoxidized styrene-butadiene star block copolymers. The study examines how the degree of epoxidation influences the morphology and properties of the resulting materials.
Micro- or nanoseparated phases in thermoset blends of an epoxy resin and PEO–PPO–PEO triblock copolymer
Polymer, 2005
The article investigates the phase separation behavior in thermoset blends composed of epoxy resin and PEO–PPO–PEO triblock copolymers. The findings contribute to the understanding of micro- and nanostructure formation in polymer blends.
Structure–property relationships of thermoplastic polyurethane elastomers based on polycarbonate diols
Journal of Applied Polymer Science, 2008
This publication examines the relationship between the structure of thermoplastic polyurethane elastomers and their mechanical properties. The study provides valuable information for designing materials with specific performance characteristics.
New poly(itaconate)s with bulky pendant groups as candidates for “all-polymer” dielectrics
Authors: Galder Kortaberria Altzerreka et al.
Journal: Reactive and Functional Polymers, Vol. 140, 2019, pp. 1–13.
Summary: The paper introduces novel poly(itaconate)s featuring bulky pendant groups, evaluating their suitability as all-polymer dielectrics, which are crucial for the development of flexible electronic devices.
Synthesis of new poly(itaconate)s containing nitrile groups as high dipolar moment entities for the development of dipolar glass polymers with increased dielectric constant. Thermal and dielectric characterization
Authors: Galder Kortaberria Altzerreka et al.
Journal: European Polymer Journal, Vol. 114, 2019, pp. 19–31.
Summary: This study focuses on synthesizing poly(itaconate)s with nitrile groups to enhance dielectric constants, contributing to the advancement of materials for high-performance electronic applications.
Biocomposites with increased dielectric constant based on chitosan and nitrile-modified cellulose nanocrystals
Authors: Galder Kortaberria Altzerreka et al.
Journal: Carbohydrate Polymers, Vol. 199, 2018, pp. 20–30.
Summary: The research presents biocomposites combining chitosan and nitrile-modified cellulose nanocrystals, resulting in materials with enhanced dielectric properties suitable for sustainable electronic applications.
Polyitaconates: A New Family of “all-Polymer” Dielectrics
Authors: Galder Kortaberria Altzerreka et al.
Journal: ACS Applied Materials and Interfaces, Vol. 10, No. 44, 2018, pp. 38476–38492.
Summary: This paper introduces polyitaconates as a new class of all-polymer dielectrics, discussing their synthesis, properties, and potential applications in flexible electronics.
Improving the performance of chitosan in the synthesis and stabilization of gold nanoparticles
Authors: Galder Kortaberria Altzerreka et al.
Journal: European Polymer Journal, Vol. 68, 2015, pp. 419–431.
Summary: The study explores methods to enhance chitosan’s effectiveness in synthesizing and stabilizing gold nanoparticles, contributing to the development of biocompatible nanomaterials.